当前位置: 首页 > 专利查询>天津大学专利>正文

沿平面和厚度方向同时具有高导热系数碳基复合材料的制备方法技术

技术编号:11205809 阅读:73 留言:0更新日期:2015-03-26 14:00
本发明专利技术涉及一种沿平面和厚度方向同时具有高导热系数碳基复合材料的制备方法;将膨胀率大于100的膨胀石墨、长径比小于1.5的碳纤维小柱和粒径小于150目的中间相沥青放在溶剂中搅拌分散0.5~4小时,于60~150℃条件下烘干,粉碎;将混合物料在小于50MPa压力下预压成型,然后将其置于马弗炉中升温至250~330℃并保温1~4小时,随后将预氧化的胚体置于石墨模具中,将其一并置于真空热压炉中进行高温热压,热压温度在1300℃以上,热压压力为5~50MPa,保温保压1~4小时。得到导热率沿平面方向大于140W/(m·K),沿厚度方向大于19W/(m·K)的高导热石墨导热片。

【技术实现步骤摘要】

本专利技术涉及一种沿平面和厚度方向同时具有高导热系数碳基复合材料的制备方法,具体地说是一种膨胀石墨和短切碳纤维导热石墨片的制备方法。
技术介绍
随着科学技术的快速发展,高效的导热和散热成为热管理领域的关键问题。例如随着大型计算机、笔记本电脑以及许多其他电器装置性能的提升和电子元件集成度的提高,其单位面积电子器件不断提高的发热量使系统产生的热量骤增,如果没有充分的热管理保障,极易导致相关器件提前老化或是损坏。微电子芯片表面温度必须维持在较低的温度下(如硅器件﹤100℃)才能确保其高性能工作,许多电子部件需要在40~60℃的温度下才能正常工作,这对导热材料提出了越来越高的要求。传统的金属导热材料(如铝、铜等)由于存在密度较大、比热导率(热导率与材料体积密度之比)较低、热膨胀系数较高、易氧化等局限性,已很难满足目前日益增长的散热需求。碳材料具有较低的密度、低热膨胀系数、优异的机械性能和较高的热导率,是近年来最具发展前景的一类导热材料,因而在能源、通讯、电子等领域具有广阔的应用前景。膨胀石墨是由天然鳞片石墨经过石墨插层、水洗、干燥、高温膨胀得到的一种疏松多孔的蠕虫状物质。膨胀石墨由于具有规整大块的石墨化壁层,声子传导的阻碍较少,导热效率很高,因而利用膨胀石墨制备碳基高导热材料成为人们的研究重点,也出现类似专利的授权或公开。中华人民共和国国家知识产权局授权号为CN101407322B、CN100368342C、CN101458049A等专利技术专利公布了利用压缩膨胀石墨制备导热板的技术。以上所述的专利技术专利仅仅披露了传统的膨胀石墨制备方法和压制工艺,只获得了导热各向异性的石墨导热材料。对于石墨片层,碳原子的晶格震动是材料导热的基础,因此石墨材料中声子传递只能沿着石墨晶面进行高速传导,而对于石墨晶面层间由于距离过远,严重影响声子的传导。在经过石墨压制工艺处理后,石墨晶面在热压作用下沿平面方向取向,因而在石墨导热片中只有在沿平面方向上具有高导热率(大于100W/(m·K)),而沿厚度方向导热率很低,不到10W/(m·K)(Zhi-Hai Feng,Tong-Qi Li,Zi-Jun Hu,Gao-Wen Zhao,Jun-Shan Wang,Bo-Yun Huang,Low cost preparation of high thermal conductivity carbon blocks with ultra-high anisotropy from a commercial graphite paper,Carbon,2012,50(10):3947–3948.)。中国的专利申请CN100368342C、CN103539111A等公布的石墨导热板的沿厚度方向导热率都在10W/(m·K)以下。因此,现有已公开的专利技术专利所获得的沿厚度方向导热系数远不能满足大型计算机、高集成电子器件等对导热材料导热能力的要求,在碳材料已有优势基础上开发一种同时具有沿厚度和平面方向的高导热材料显得尤为重要。
技术实现思路
本专利技术针对现有膨胀石墨制备的石墨导热片沿厚度方向导热率过低的缺陷,提供一种沿平面和厚度方向同时具有高导热性能的石墨导热片及其制备方法。沿平面和厚度方向导热率分别达到140W/(m·K)和19W/(m·K)的石墨导热片,如图1所示。本专利技术采用以下技术方案:一种沿平面和厚度方向同时具有高导热系数碳基复合材料的制备方法,步骤如下:1)将膨胀率大于100的膨胀石墨、长径比小于1.5的碳纤维小柱和粒径小于150目的中间相沥青放在溶剂中搅拌分散,以100~600r/min的转速常温搅拌0.5~4小时,于60~150℃条件下烘干,粉碎;2)将以上混合物料在小于50MPa压力下预压成型,然后将其置于马弗炉中升温至250~330℃并保温1~4小时,随后将预氧化的胚体置于石墨模具中,将其一并置于真空热压炉中进行高温热压,热压温度在1300℃以上,热压压力为5~50MPa,保温保压1~4小时。所述的溶剂为甲苯、氯仿、石油醚、四氯化碳、喹啉或吡啶。所述膨胀石墨、短切碳纤维和中间相沥青的质量百分含量为:膨胀石墨:45%~80%,短切碳纤维:10~45%;中间相沥青:8~35%。具体说明如下:(1)膨胀石墨的制备:将可膨胀石墨在1000~1200℃下进行膨胀,获得膨胀率大于100的膨胀石墨,如图2所示,为一种疏松多孔的结构,膨胀率是指可膨胀石墨膨胀后与膨胀前体积比;也可以直接采用市售产品。(2)碳纤维的短切:将碳纤维短切至长径比(纤维长度与直径之比)小于1.5的小圆柱;由于碳纤维沿轴向具有高导热系数,而径向导热系数很低,将其短切到较小长度后,在随后的热压过程中将会趋向于垂直竖立在石墨层间,利用其沿轴向的高导热性能实现石墨层间热流的传递,这非常有利于复合材料沿厚度方向的导热;通过以上步骤的膨胀石墨和短切碳纤维的复合及热压成型,实现了在平面方向具有高导热性能的膨胀石墨与沿轴向具有高导热性能的碳纤维的复合,在沥青粘结剂作用下经过高温热压使得复合材料致密化,得到导热率沿平面方向大于140W/(m·K),沿厚度方向大于19W/(m·K)的高导热石墨导热片。本专利技术的有益效果:本专利技术的基体原料膨胀石墨易得,碳纤维的裁剪简单可控。本专利技术中微观结构有序化、致密化和石墨化可高效完成,可获的具有高导热系数的碳基复合材料导热片,其导热能力远远优于传统的膨胀石墨热压卷材以及其他膨胀石墨和碳纤维复合材料。附图说明:图1为本专利技术的导热片的微观示意图,包括复合形式和热压方向;图2为膨胀石墨的扫描电镜图片;图3为碳纤维短切后的图片。具体实施方式下面给出本专利技术的6个实施例,是对本专利技术的进一步说明,而不是限制本专利技术的范围。实施例1选择膨胀率为100的膨胀石墨。将直径30微米的碳纤维剪切成长度小于45微米的短切碳纤维(长径比1.5)。将中间相沥青研磨至150目并搅拌溶解分散在甲苯溶液中。将膨胀石墨(5g)、短切碳纤维(质量比3g)和沥青甲苯溶液(沥青质量比2g)混合后,以100r/min的转速搅拌4小时,然后在150℃下迅速烘干、粉碎。将以上混合物料置于石墨模具中在50MPa压力预压成型,取出后将其置于马弗炉中缓慢升温至250℃并保温4小时,然后在1300℃的温度和50MPa压力下进行真空热压,保温保压1小时后获得石墨导热片,测试沿平面方向导热率为149.2W/(m·K),沿厚度方向导热率为19.7W/(m·K)。实施例2将可膨胀本文档来自技高网
...

【技术保护点】
一种沿平面和厚度方向同时具有高导热系数碳基复合材料的制备方法,其特征是1)将膨胀率大于100的膨胀石墨、长径比小于1.5的碳纤维小柱和粒径小于150目的中间相沥青放在溶剂中搅拌分散,以100~600r/min的转速常温搅拌0.5~4小时,于60~150℃条件下烘干,粉碎;2)将以上混合物料在小于50MPa压力下预压成型,然后将其置于马弗炉中升温至250~330℃并保温1~4小时,随后将预氧化的胚体置于石墨模具中,将其一并置于真空热压炉中进行高温热压,热压温度在1300℃以上,热压压力为5~50MPa,保温保压1~4小时。

【技术特征摘要】
1.一种沿平面和厚度方向同时具有高导热系数碳基复合材料的制备方法,其特征是
1)将膨胀率大于100的膨胀石墨、长径比小于1.5的碳纤维小柱和粒径小于150目
的中间相沥青放在溶剂中搅拌分散,以100~600r/min的转速常温搅拌0.5~4小时,于
60~150℃条件下烘干,粉碎;
2)将以上混合物料在小于50MPa压力下预压成型,然后将其置于马弗炉中升温至
250~330℃并保温1~4小时,随后将预氧化的胚体置于石墨模具中,将其一并置于真空热
压炉中进行高温热压,热压温度在1300℃以上,热压压力为5~...

【专利技术属性】
技术研发人员:封伟秦盟盟冯奕钰
申请(专利权)人:天津大学
类型:发明
国别省市:天津;12

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1