本发明专利技术涉及一种利用智能手机进行主动式乘客信息获取及服务的方法,该方法包括:乘客利用随身携带的手持移动终端设备,提供地铁客流拥挤信息的终端应用,以及用于大规模数据存储和挖掘的中央处理系统。该方法是:通过安装在智能手机中的应用程序,主动获取乘客的地理位置信息数据和手机的设备识别码,将通过数据传输网络传送给中央处理系统,中央处理系统将结合地铁线网的地理信息对乘客的地理数据进行位置匹配,进而获取乘客的出行轨迹及车站客流参数。本发明专利技术的系统与方法能够对地铁网络上乘客的行走轨迹、地铁车站和区间的客流人数以及换乘人数进行统计,获取的参数数据能够为乘客出行服务、客流组织提供丰富的基础数据支撑和平台支持。
【技术实现步骤摘要】
本专利技术涉及,应用于城 市轨道交通客运组织领域。
技术介绍
城市轨道交通客运组织实践和研究表明,乘客或乘客集群在地铁运营网络的线路 选择、客流分布等乘客行为参数,不仅对轨道交通的服务水平计算与量化评价、客流组织优 化提供重要的基础数据支撑,同时也对乘客个体的换乘路线选择,乘车时间预测都具有重 要的现实意义。目前,在城市轨道交通实际运营中,对于乘客客流信息的获取主要包括模糊 推算和直接测算方法两种;对乘客客流信息的发布主要借助于乘客信息系统(PIS),采取 站内发布的方式。 模糊推算方法。模糊推算的思路偏于宏观和理论层面。利用运营中实际的票务信 息构成的AFC数据,获得各个时间段各个站点各个进站口的进出站数量。借助于该数据进 行客流清分,采用传统的客流方法,基于效用理论和Logit模型,构建综合阻抗函数,计算 乘客选择某一条路径的比例以及该路径上的客流量。顾磊提出单一乘客的出行路径可以利 用层次分析法确定其路径选择权重,但是其判断矩阵需要人为进行修正,计算量较为复杂; 陆春江利用了无向图的数据存储方式,应用了图论的搜索方法确定出行路径的选择问题, 产生可行路径分配比例;牛新奇引入了 K短路的求解思路,通过首先通过建立轨道交通网 络模型的邻接矩阵,随后运用计算机算法求解0D车站之间的最短路径、次短路径和渐短路 径,进而确定3条线路的分配比例,进而实现对客流分布的推算。随着轨道交通建设的逐步 推进,轨道交通线路网络化程度逐步提高,以Logit模型为代表的一系列数学模型模糊推 算方法,由于模型的简化和适用条件的限制,已经无法满足车站客运组织管理信息化和精 细化的需求。 直接测量方法,按照测量实施主体的不同,可以分为人工跟踪记录与自动化检测 两种。其中,人工跟踪记录法,由于时间人力耗费巨大且调研的宏观可控性较低,因此方法 并不理想。自动测量主要利用自动化的仪器设备,对乘客及乘客集群进行实时测量,获取路 网客流分布基本信息。目前在自动化检测中应用比较广泛的主要是基于视频图像处理的方 法。 基于视频图像的方法结合图形处理和模式识别对客流进行识别,进而通过信息汇 总,得到路网的客流分布情况。Siu-Yeung Cho提出将前景图片和背景参考图像相减计算 来提取前景目标,然后识别场景中的人数,但它没考虑背景图像的差异变化,不能实时适应 场景环境变化;Samia Bouchafa综合运用连续图像差异比较、图像中光流分布和图像滤波 等方法来监测地铁走廊中来往的客流,它受光线变化的影响较大而且工作的实时性不够; Marana A N中则将图像处理与人工神经网络技术结合,计算在图像人群的拥挤程度,其结果 只是模糊告诉当前是否拥挤,是何种拥挤程度,并不能确切告诉客流数。骆志强利用普通 CCD采集图像,综合帧间图像差异和消除背景图像的处理技术来有效检测图像中的运动人 群,克服传统方法中存在的测量误差,并依据所检测的前景图像区域面积与整个图像有效 面积的比例来估测当前图像中人群数目,取得了较好的效果。但是,基于视频图像对客流进 行识别,需要在轨道交通路网各个位置安装视频采集系统,具有较大的工程量和投资量;此 夕卜,图像视频算法目前准确性还有待提高,目前还满足不了轨道交通客流分布量化的需求。 客流信息发布方面,目前主要借助于PIS(乘客信息系统)面向轨道交通各车站内 乘客发布。但是由于乘客信息系统技术复杂,目前国内仅有上海地铁、北京地铁、深圳体贴 和广州地铁的部分线路引入了较为完整的PIS系统,但是目前国内的乘客信息系统尚不具 备实时发布客流彳目息的功能,相关研究也尚属空白。 综上可知,既有研究中尚未提出智能手机进行主动式地铁客流信息获取及服务的 系统与方法。
技术实现思路
为了克服现有技术的不足,本专利技术提出了一种利用手持终端进行主动式获取乘客 轨迹及行为参数的系统与方法。作为自动化的乘客数据采集技术,本专利技术提出的方法和系 统可以补充该领域的空白,为乘客利用智能手机实时查看全路网线路客流分布、轨道交通 运营单位实时获得乘客路径信息提供了完整的解决方案。 -种利用手持终端应用获取乘客轨迹及行为参数的系统包括: 手持移动终端,用于查询相关信息,并将包含特征数据的特征信息同时上传给前 端数据库; 前端查询服务器,用于响应乘客的查询需求,并借助于与其他系统的接口进行互 通,实现数据共享;前端查询服务器可以直接借助于现有其他查询平台,通过接口与本系 统进行连接。 中央级数据仓库,用于提取乘客在应用平台查询相关信息过程中的特征值进行数 据分析,并进行大规模数据匹配运算和人工智能分析。 进一步,所述特征信息是指乘客作为查询应用的使用者,所使用的IMEI识别码、 查询位置地点信息,查询过程中输入的路径信息及在应用开启时心跳位置信号。 进一步,所述手持移动终端包括设置在移动终端中的查询应用平台,能够响应乘 客的查询需求,同时能够在得到乘客用户许可的前提下,将用户查询过程中产生的手机 IMEI识别码、地点信息、路径信息特征信息传递给前端服务器。 一种利用手持终端应用获取乘客轨迹及行为参数的方法,该方法包括如下步骤: 乘客主动通过手持智能终端查询相关信息,并将包含特征数据的乘客特征信息同 时上传给前端数据库; 前端服务器对乘客的特征信息进行分解提取,分解其查询需求与特征数据,同时 利用相应接口提取数据并返回给终端用户,并将用户特征信息传递给中央数据仓库; 中央级数据仓库将结合预先存储的车站设施基础数据、移动数据终端位置与设施 位置对应字典,根据数据挖掘算法对接收到的所述原始数据、预先存储的所述车站设施基 础数据、移动数据终端位置与设施位置对应字典进行匹配运算,根据运算结果数据最终获 取乘客轨迹及行为参数。 进一步,所述乘客特征信息包括乘客手机IMEI识别码、乘客地点信息及乘客路径 信息。 进一步,所述数据挖掘算法包括如下步骤: 步骤101:读取某车站原始检测数据表、站台基础数据表、通道基础数据表,按照 移动网络基站位置进行分类; 步骤102:与车站地理信息进行对照,获取某一待分析区域的手持终端MEI识别 码集合,记为Q1 ; 步骤103:遍历集IMEI识别码集合的每一个元素,针对每一个识别码,针对第i个 元素 Q1 [i],获得其目的地时间和查询时间,得到数据列表Q2 步骤104 :判断i是否小于或等于Q1中元素的数量,如果否,则结束;如果是,则转 入下一步: 步骤105 :对Q2,按照查询时间排序,得到Q2', 步骤106 :提取出中目的地编码集合C,遍历C中元素,得到该时段该车站乘客目的 地信息集合D ; 步骤107 :利用D信息与平日该时段0D数据进行比对,按收集数据数量与频次进 行比例扩大,即可得到当日当时段0D数据; 步骤108 :利用D集合结合查询平台返回心跳数据; 步骤109 :得到心跳时间间隔T[i]和距离间隔D[i],两者相除得到该乘客的平均 速度; 步骤110:对下一个集合进行统计; 步骤111 :与0D数据进行对比,得到未来路网客流分布情况演变趋势; 步骤112 :求出本文档来自技高网...

【技术保护点】
一种利用手持终端应用获取乘客轨迹及行为参数的系统,其特征在于,包括:手持移动终端,用于查询相关信息,并将包含特征数据的特征信息同时上传给前端数据库;前端查询服务器,用于响应乘客的查询需求,并借助于与其他系统的接口进行互通,实现数据共享;前端查询服务器可以直接借助于现有其他查询平台,通过接口与本系统进行连接;中央级数据仓库,用于提取乘客在应用平台查询相关信息过程中的特征值进行数据分析,并进行大规模数据匹配运算和人工智能分析。
【技术特征摘要】
1. 一种利用手持终端应用获取乘客轨迹及行为参数的系统,其特征在于,包括: 手持移动终端,用于查询相关信息,并将包含特征数据的特征信息同时上传给前端数 据库; 前端查询服务器,用于响应乘客的查询需求,并借助于与其他系统的接口进行互通,实 现数据共享;前端查询服务器可以直接借助于现有其他查询平台,通过接口与本系统进行 连接; 中央级数据仓库,用于提取乘客在应用平台查询相关信息过程中的特征值进行数据分 析,并进行大规模数据匹配运算和人工智能分析。2. 根据权利要求1所述的系统,其特征在于,所述特征信息是指乘客作为查询应用的 使用者,所使用的頂EI识别码、查询位置地点信息,查询过程中输入的路径信息及在应用 开启时心跳位置信号。3. 根据权利要求1所述的系统,其特征在于,所述手持移动终端包括设置在移动终端 中的查询应用平台,能够响应乘客的查询需求,同时能够在得到乘客用户许可的前提下,将 用户查询过程中产生的手机頂EI识别码、地点信息、路径信息特征信息传递给前端服务 器。4. 一种利用手持终端应用获取乘客轨迹及行为参数的方法,其特征在于,该方法包括 如下步骤: 乘客主动通过手持智能终端查询相关信息,并将包含特征数据的乘客特征信息同时上 传给前端数据库; 前端服务器对乘客的特征信息进行分解提取,分解其查询需求与特征数据,同时利用 相应接口提取数据并返回给终端用户,并将用户特征信息传递给中央数据仓库; 中央级数据仓库将结合预先存储的车站设施基础数据、移动数据终端位置与设施位置 对应字典,根据数据挖掘算法对接收到的所述原始数据、预先存储的所述车站设施基础数 据、移动数据终端位置与设施位置对应字典进行匹配运...
【专利技术属性】
技术研发人员:李得伟,王玫,尹浩东,
申请(专利权)人:北京交通大学,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。