当前位置: 首页 > 专利查询>天津大学专利>正文

面向硬件实现的快速高效无损图像压缩方法技术

技术编号:10408021 阅读:163 留言:0更新日期:2014-09-10 17:29
本发明专利技术涉及微电子学的集成电路设计领域和数字图像编码压缩领域,为提供一种面向硬件实现的快速高效无损图像压缩方法。与传统的FELICS算法相比,能够简化Golomn-Rice编码中k参数的选取过程,减小所需存储器的大小并缩短计算周期,提高图像压缩系统的效率。为此,本发明专利技术采取的技术方案是,面向硬件实现的快速高效无损图像压缩方法,包括如下步骤:编码一帧图像,采用标准的FELICS算法不进行任何编码直接输出前2个像素,然后按照光栅扫描顺序依次对像素进行编码。本发明专利技术主要应用于成电路设计。

【技术实现步骤摘要】

【技术保护点】
一种面向硬件实现的快速高效无损图像压缩方法,其特征是,包括如下步骤:编码一帧图像,采用标准的FELICS算法不进行任何编码直接输出前2个像素,然后按照光栅扫描顺序依次对像素进行编码,具体编码步骤如下:1)选取当前像素P和2个相邻像素N1、N2,N1与N2已知,且已编码,为P提供相关信息;其中按照当前像素P点的位置分为四种情况对相邻像素进行选取:若P点为第一行的前两个像素,则不对P进行编码,直接输出;若P为第一行的其余像素,则选取左边两个像素值作为参考值;若P为第一列而非第一行的像素,则选取P上方和右上方两个像素作为参考值;若P在上述三种情况以外的位置则选取P左侧和上方两个像素作为参考值;2)计算预测区间下界L=min{N1,N2},上界H=max{N1,N2},预测上下文Δ=H-L;其中L为两个参考像素值中较小者,H为较大者,Δ为较大者与较小者的差值,即预测区间;3)如果L≤P≤H,像素P落在预测区间[L,H],编码1bit的0并置于该像素输出编码的最高位,表示像素P落在预测区间内,然后对P-L在[0,Δ]内进行修正的二元编码;如果L>P,则像素P低于预测区间,编码1bit的1,表示像素P落在预测区间外,再用1bit的0表示低于预测区间,并将‘10’置于输出编码的最高位,然后计算出P点与预测区间边界的差值D=L-P-1,对该差值D进行Golomb‑Rice编码;如果P>H,则像素P处于高于预测区间,编码1bit的1,表示像素P落在预测区间外,再用1bit的1表示高于预测区间,并将‘11’置于输出编码的最高位;然后计算出P点与预测区间边界的差值D,D=P-H-1,对该差值D进行Golomb‑Rice编码;当像素值落在预测区间外时将采用Golomb‑Rice编码,在开始一帧图像处理前建立一个编码累加表C[Δ][k],其中Δ取值范围同像素值的变化范围,k取值范围为0至像素位深度;每次Golomb‑Rice codes编码时,根据Δ0=H-L确定k,即选取最小的k0,使C[Δ0][k0]≤C[Δ0][k],k=0,1,..., (1)对于每一个预测上下文的Δ,编码累加表C[Δ][k]记录了使用每一个可能的k值(0,1,…)时Golomb‑Rice编码的编码总长度,同时使用令编码总长度最小的k值进行下一次编码;参数k确定后,对D/2k进行一元编码;后对差值D剩余的低k位进行二元编码最后要更新编码累加表:C[Δ0][k]=C[Δ0][k]+D/2k+k+1,k=0,1,...,7 (2)观察FELICS的编码过程,编、解码器要在Golomb‑Rice编码下对Δ(0~255),在k(0~像素位深度)下累计编码位,从而需要256×8W bits的存储空间,W表示编码累加值的位宽。更新编码累加表的过程也要消耗额外的操作周期。...

【技术特征摘要】

【专利技术属性】
技术研发人员:姚素英于潇徐江涛史再峰高静聂凯明高志远
申请(专利权)人:天津大学
类型:发明
国别省市:天津;12

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1