一种基于光谱特征空间权化的光谱特征指数提取方法技术

技术编号:10238279 阅读:245 留言:0更新日期:2014-07-19 04:35
一种基于光谱特征空间权化的光谱特征指数提取方法,含以下步骤:一、读入高光谱分辨率图像数据;二、根据应用需求及地物之间可分性,确定组成原始光谱特征空间的光谱特征;三、初始化感兴趣类别各个光谱特征权重;四、构建感兴趣类别的类内离散度矩阵和类间离散度矩阵;五、计算得到光谱特征空间权化的感兴趣类别特征空间变换矩阵,构建光谱特征空间权化的适应度函数;六、采用基于速度压缩的进化策略,计算步骤五的适应度函数值,更新感兴趣类别各个光谱特征权重;七、进行迭代终止条件判断,若满足则获得最终感兴趣类别各个光谱特征权重,若不满足返回步骤五;八、利用步骤七得到的优化后感兴趣类别各个光谱特征权重,进行光谱特征指数的提取。

【技术实现步骤摘要】
一种基于光谱特征空间权化的光谱特征指数提取方法
本专利技术涉及一种基于光谱特征空间权化的光谱特征指数提取方法,属于高光谱数据处理方法与应用
,适用于高光谱数据特征提取的理论方法和应用技术研究。
技术介绍
高光谱遥感数据具有图谱合一的特点,连续的光谱特征为直接地物识别提供了有效的技术支撑。目前,光谱特征提取方法主要包括两大类,一类是基于光谱特征参量提取的方法,主要包括提取光谱吸收特征位置、深度、宽度、面积、斜率等以及归一化光谱吸收特征指数等;另一类是基于光谱特征变换的方法,主要包括主成分变换、投影追踪、最小噪声分量分离等。其中,基于光谱特征参量提取的方法只是利用了单一的光谱特征参量,提取的特征容易受到外界因素的影响,并且地物光谱主要特征/单一光谱特征会存在一定的相似性,从而导致提取特征的不稳定和匹配不唯一性,最终使得识别精度下降;基于光谱特征变换的方法在一定程度上增强了目标光谱特征之间的差异性,但是改变了原始光谱特征的物理含义,使得在识别中很难实现有效地匹配识别,从而导致识别精度的下降。
技术实现思路
本专利技术的目的在于克服现有技术的不足,提供一种基于光谱特征空间权化的光谱特征指数提取方法,它是一种综合利用多个光谱特征、稳定的基于光谱特征空间权化的光谱特征指数提取方法。本专利技术的技术解决方案为:一种利用优化算法实现不同贡献特征的权重优化的稳定光谱特征指数提取方法,该方法首选利用多光谱特征参量构建原始特征空间,基于可分性与贡献的准则构建特征权化判别准则,再利用基于随机搜索的智能优化方法进行不同特征权重的优化,最后基于特征加权等技术方法实现稳定、多光谱特征联合提取,从而在综合利用高光谱数据丰富的光谱特征的同时提高特征提取的稳定性以及地物识别的准确性。本专利技术一种基于光谱特征空间权化的光谱特征指数提取方法,其步骤如下:步骤(1)读入高光谱分辨率图像数据;步骤(2)根据应用需求以及地物之间的可分性,确定组成原始光谱特征空间的光谱特征;步骤(3)初始化感兴趣类别各个光谱特征权重;步骤(4)基于类别可分性最大化的准则,构建感兴趣类别的类内离散度矩阵和类间离散度矩阵;步骤(5)计算得到光谱特征空间权化的感兴趣类别特征空间变换矩阵,构建光谱特征空间权化的适应度函数;步骤(6)采用基于速度压缩的进化策略,计算步骤(5)的适应度函数值,不断更新感兴趣类别各个光谱特征权重;步骤(7)进行迭代终止条件判断,若满足迭代终止条件则获得最终感兴趣类别各个光谱特征权重,若不满足迭代终止条件,返回步骤(5);步骤(8)利用步骤(7)得到的优化后的感兴趣类别各个光谱特征权重,进行光谱特征指数的提取。其中,步骤(1)中所述的读入高光谱数据为:X=[x1,x2,...,xn]T,n为像元数。其中,步骤(2)中所述的确定组成原始光谱特征空间的光谱特征的构建方法包括三大类:第一类方法选择光谱特征参量,主要是利用前十个吸收强度大的光谱特征;第二类方法选择变换后的光谱特征,主要是利用消除相关性的主成分分析特征、具有非线性区分能力的核线性判别分析特征;第三类是上述两种方法组合得到的光谱特征,即前十个吸收强度大的光谱特征与主成分分析特征、核线性判别分析特征组成的光谱特征。其中,步骤(3)所述的初始化感兴趣类别各个光谱特征权重,采用随机初始化的方法确定。其中,步骤(4)所述的基于类别可分性最大化的准则,构建感兴趣类别的类内离散度矩阵和类间离散度矩阵,其具体实现方法如下:其中和分别为感兴趣类别i权化特征空间的类内离散度矩阵与类间离散度矩阵,为类别i的第t个样本,1≤t≤Ni,Ni为类别i的总样本数,C为类别数目,μi和μj分别为类别i与类别j的均值向量,Pi为感兴趣类别i的变换矩阵。其中,步骤(5)所述的计算得到光谱特征空间权化的感兴趣类别特征空间变换矩阵,构建光谱特征空间权化的适应度函数,其具体实现方法如下:假设针对感兴趣类别i进行特征权化采用的变换矩阵为Pi,Pi为对角阵,并且对角线元素为特征权重,如下:其中diag{·}表示由其内部元素作为对角线元素构成的对角阵,为感兴趣类别i对应的权化特征空间的第t个特征的权重,1≤t≤T,T为总特征数,1≤i≤C,C为总类别数,基于感兴趣类别i可分性量度准则的变换矩阵Pi计算方法如下:其中表示寻找使函数f(i)最大的参量i,“trace”表示矩阵的迹;根据可分性准则构建适应度函数:其中fitness(·)即为感兴趣类别特征权化方法的适应度函数,与分别为原特征空间的感兴趣类别i的类内离散度矩阵与类间离散度矩阵,快速、准确的搜索到能够最大化fitness(Pi)的变换矩阵Pi是感兴趣类别特征权化的最终目标。其中,步骤(6)所述的采用基于速度压缩的进化策略,计算步骤(5)的适应度函数值,不断更新感兴趣类别各个光谱特征权重,其具体实现方法如下:为了解决搜索速度以及搜索精度的问题,采用基于速度压缩的进化策略:其中粒子i第k代的位置为yi(k)、速度为vi(k),粒子i第k+1代的位置为yi(k+1)、速度为vi(k+1),该粒子历史最优位置为pbesti(k),整个粒子群历史最优位置为gbest(k),即全局最优解,通过更新粒子位置实现适应度函数的计算,然后实现光谱特征权重的优化与更新,φi~[0,φi]均匀分布,i=1,2,并且限定:其中,步骤(7)所述的迭代终止条件判断,其方法为达到最大迭代次数或|pbesti(k)-gbest(k)|≤ε,其中,ε为很小的数。其中,步骤(8)所述的利用步骤(7)得到的优化后的感兴趣类别各个光谱特征权重,进行光谱特征指数的提取,该光谱特征指数的提取方法如下:其中,F为综合的光谱特征指数,αt为第t个光谱特征,wt为利用光谱特征空间权化得到的最后的第t个特征的权重,即利用优化后得到的变换矩阵Pi获得。本专利技术与现有技术相比的优点在于:克服了传统的光谱特征提取方法受外界因素影响大、单一特征不稳定又存在相似等局限,本方法利用智能优化理论和特征加权模型,实现了贡献大、可分性大的光谱特征指数的提取。它具有以下的优点:(1)采用基于智能优化理论的光谱特征空间权化技术,解决了不同光谱特征根据贡献大小、可分性大小进行权重的自动设置等问题;(2)利用多光谱特征参量进行基于优化权重的特征加权,实现了多光谱特征的综合利用和提取,克服了单一光谱特征不稳定、相似等问题,能够有效地提高光谱特征的稳定性和地物识别精度。附图说明图1为本专利技术流程框图具体实施方式为了更好的说明本专利技术涉及的基于光谱特征空间权化的光谱特征指数提取方法,利用基于声光可调谐滤波器的高光谱成像仪数据进行基于光谱特征空间权化的光谱特征指数提取。见图1,本专利技术一种基于光谱特征空间权化的光谱特征指数提取方法,具体实现步骤如下:步骤(1)读入高光谱分辨率图像数据:读入基于声光可调谐滤波器的高光谱成像仪获取的高光谱数据,数据大小为100×150×173,波段区间455~1000nm;步骤(2)根据应用需求以及地物之间的可分性,确定组成原始光谱特征空间的光谱特征:按照光谱吸收强度进行排序,取前十个光谱特征参量构成原始光谱特征空间;步骤(3)初始化感兴趣类别各个光谱特征权重:利用随机初始化粒子位置,从而实现感兴趣类别各个光谱特征权重的随机初始化;步骤(4)基本文档来自技高网...
一种基于光谱特征空间权化的光谱特征指数提取方法

【技术保护点】
一种基于光谱特征空间权化的光谱特征指数提取方法,其特征在于:该方法具体步骤如下:步骤(1)读入高光谱分辨率图像数据;步骤(2)根据应用需求以及地物之间的可分性,确定组成原始光谱特征空间的光谱特征;步骤(3)初始化感兴趣类别各个光谱特征权重;步骤(4)基于类别可分性最大化的准则,构建感兴趣类别的类内离散度矩阵和类间离散度矩阵;步骤(5)计算得到光谱特征空间权化的感兴趣类别特征空间变换矩阵,构建光谱特征空间权化的适应度函数;步骤(6)采用基于速度压缩的进化策略,计算步骤(5)的适应度函数值,不断更新感兴趣类别各个光谱特征权重;步骤(7)进行迭代终止条件判断,若满足迭代终止条件则获得最终感兴趣类别各个光谱特征权重,若不满足迭代终止条件,返回步骤(5);步骤(8)利用步骤(7)得到的优化后的感兴趣类别各个光谱特征权重,进行光谱特征指数的提取。

【技术特征摘要】
1.一种基于光谱特征空间权化的光谱特征指数提取方法,其特征在于:该方法具体步骤如下:步骤(1)读入高光谱分辨率图像数据;步骤(2)根据应用需求以及地物之间的可分性,确定组成原始光谱特征空间的光谱特征;步骤(3)初始化感兴趣类别各个光谱特征权重;步骤(4)基于类别可分性最大化的准则,构建感兴趣类别的类内离散度矩阵和类间离散度矩阵;步骤(5)计算得到光谱特征空间权化的感兴趣类别特征空间变换矩阵,构建光谱特征空间权化的适应度函数;步骤(6)采用基于速度压缩的进化策略,计算步骤(5)的适应度函数值,不断更新感兴趣类别各个光谱特征权重;步骤(7)进行迭代终止条件判断,若满足迭代终止条件则获得最终感兴趣类别各个光谱特征权重,若不满足迭代终止条件,返回步骤(5);步骤(8)利用步骤(7)得到的优化后的感兴趣类别各个光谱特征权重,进行光谱特征指数的提取。2.根据权利要求1所述的一种基于光谱特征空间权化的光谱特征指数提取方法,其特征在于:步骤(1)中所述的读入高光谱数据为:X=[x1,x2,…,xn]T,n为像元数。3.根据权利要求1所述的一种基于光谱特征空间权化的光谱特征指数提取方法,其特征在于:步骤(2)中所述的确定组成原始光谱特征空间的光谱特征的构建方法包括三大类:第一类方法选择光谱特征参量,是利用前十个吸收强度大的光谱特征;第二类方法选择变换后的光谱特征,是利用消除相关性的主成分分析特征、具有非线性区分能力的核线性判别分析特征;第三类是上述两类方法组合得到的光谱特征,即前十个吸收强度大的光谱特征与主成分分析特征、核线性判别分析特征组成的光谱特征。4.根据权利要求1所述的一种基于光谱特征空间权化的光谱特征指数提取方法,其特征在于:步骤(3)所述的初始化感兴趣类别各个光谱特征权重,采用随机初始化的方法确定。5.根据权利要求1所述的一种基于光谱特征空间权化的光谱特征指数提取方法,其特征在于:步骤(4)所述的基于类别可分性最大化的准则,构建感兴趣类别的类内离散度矩阵和类间离散度矩阵,其具体实现方法如下:其中和分别为感兴趣类别i权化特征空间的类内离散度矩阵与类间离散度矩阵,为类别i的第t个样本,1≤t≤Ni,Ni为类别i的总样本数,C为类别数目,μi和μj分别为类别i与类别j的均值向量,Pi为感兴趣类别i的变换矩阵,T为总特征数。6.根据权利要求1所述的一种基于光谱特征空间权化的光谱特征指数提取方法,其特征在于:步骤(5)所述的计算得到光谱特征空间权化的感兴趣类别特征空间变换矩阵,构建光谱特征空间权化的适应度函数,其具体实现方法如下:假设针对感兴趣类别i进行特征权化采用的变换矩阵为Pi,Pi为对角阵,并且对角线...

【专利技术属性】
技术研发人员:杨日红李娜李咏洁
申请(专利权)人:中国国土资源航空物探遥感中心北京航空航天大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1