一种低热弹性阻尼的鼓膜仿生微谐振器件制造技术

技术编号:20368820 阅读:24 留言:0更新日期:2019-02-16 19:24
本实用新型专利技术涉及微机电系统MEMS领域,公布了一种低热弹性阻尼的鼓膜仿生微谐振器件,包括:谐振体,基底。谐振体四周边缘固定在基底上,形成固定约束。谐振体为鼓膜仿生结构,形状上近似于人体鼓膜。利用一阶贝塞尔函数获得谐振体的轮廓曲线,并给定一定厚度,使其绕固定轴旋转形成谐振体。谐振体在振动时不仅产生弯曲应变,还会出现拉伸应变,而拉伸应变不产生热弹性耗散,所以本实用新型专利技术的结构能实现较低的热弹性阻尼。

A Bionic Microresonant Device with Low Thermoelastic Damping for Tympanic Membrane

The utility model relates to the field of microelectromechanical system (MEMS), and discloses a bionic microresonant device of tympanic membrane with low thermoelastic damping, including a resonator and a substrate. The edges around the resonator are fixed on the base to form a fixed constraint. The resonator is a bionic structure of the tympanic membrane, which is similar to the human tympanic membrane in shape. The first-order Bessel function is used to obtain the contour curve of the resonator, and a certain thickness is given to make it rotate around the fixed axis to form the resonator. The resonator not only generates bending strain but also tensile strain when it vibrates, and the tensile strain does not produce thermoelastic dissipation, so the structure of the utility model can achieve lower thermoelastic damping.

【技术实现步骤摘要】
一种低热弹性阻尼的鼓膜仿生微谐振器件
本技术属于微机电系统MEMS领域,涉及一种低热弹性阻尼的鼓膜仿生微谐振器件。
技术介绍
品质因数是谐振器件的重要性能指标。对于封装在真空中的器件,热弹性阻尼是影响品质因数的重要因素之一。热弹性阻尼是由于机械结构在应力作用下发生压缩、拉伸,使得体积发生变化,导致热量产生并耗散掉,也即谐振器件的振动能量变为热能耗散掉。当微谐振器工作在真空中,产生高频率振动,热弹性阻尼就是其性能与效率的最大制约因素。现在常见的平面薄板型微谐振器,主要振动方式是横向振动,热弹性阻尼也主要产生在弯曲应变程度大的厚度方向,数值相对较大。因此需要探索更合理的结构来减小因热弹性阻尼带来的能量损耗,提高能量利用效率。仿生学是利用机械、电子等技术模仿生物体的结构和功能实现工程应用的一门学科,渗透并结合有生物学、生物物理学、电子学、控制论、人机学、数学、心理学以及自动化技术等。随着仿生学的不断发展,人们开始运用已有技术模拟生物结构和功能,从而解决一些工程问题。随着分子生物学的进展以及纳米技术和MEMS技术发展,仿生学与MEMS的结合具有了可行性。鼓膜是人耳中的一层半透明薄膜,它有放大接收到声波的作用,与MEMS微谐振器的功能有共通之处。在进化过程中,鼓膜发展为现有的结构有其优越性,因此将MEMS微谐振器设计为鼓膜结构具有实际价值。
技术实现思路
技术问题:本技术提供一种可以显著降低热弹性阻尼的鼓膜仿生结构微谐振器件。技术方案:本技术的低热弹性阻尼鼓膜仿生微谐振器件,包括:谐振体和基底。谐振体四周边缘固定在基底上,形成固定约束。谐振体为鼓膜仿生结构,形状上近似于人体鼓膜。利用一阶贝塞尔函数获得谐振体的轮廓曲线,并给定一定厚度,使其绕固定轴旋转形成谐振体。本技术的鼓膜仿生微谐振器件中,谐振体工作在固有频率处,产生高频微幅振动,激励形式为静电驱动或压电驱动。本技术中的低热弹性阻尼谐振体是一种仿生结构,来源于人耳鼓膜结构。由贝塞尔函数可拟合鼓膜结构,该鼓膜仿生结构方程为其中a为圆盘半径,W为与原点之间平面距离为r处的高度,J0(x)和I0(x)别为实宗量与虚宗量的第一类贝塞尔函数。B=-J0(x)/I0(x),C为高度系数。该鼓膜仿生结构工作在固有频率附近,热弹性阻尼明显小于同直径的圆盘。物理原理分析如下。在MEMS谐振器件振动时,结构的压缩和拉伸会造成温度不平衡,导致不可逆热流,发生热松弛现象,使得机械能转化为热能,形成了能量耗散,即热弹性阻尼。弯曲应变是热弹性阻尼的主要来源。本技术的低热弹性阻尼结构谐振体在静止状态下自身存在一定弯曲,当受到外部激励产生振动时,谐振体不仅会发生弯曲应变,还会出现拉伸应变。弯曲应变会产生厚度方向即法向的热传递,拉伸应变自身不产生热传递。相比于圆盘式微谐振器主要发生横向振动,产生弯曲应变,本技术的鼓膜仿生结构微谐振器,存在不产生热弹性阻尼的拉伸应变,法向弯曲应变较小,所以总体热弹性阻尼较低。有益效果:本技术与现有技术相比,有以下优点:本技术的鼓膜仿生结构微谐振器,在受到外部激励时,最大振幅出现在半径中点偏向边缘的位置,并且以环状形式出现,其涉及范围大;而普通圆盘式微谐振器,最大振幅在圆心处,范围很小。所以本技术的仿生微谐振器,其最大振动位移更易于被利用。本技术的鼓膜仿生结构微谐振器,振动时会发生弯曲应变和拉伸应变,拉伸应变不产生热弹性阻尼。普通圆盘式微谐振器,振动主要形式为横向振动,发生弯曲应变。而弯曲应变是热弹性阻尼的主要来源,所以本技术的鼓膜仿生微谐振器的热弹性阻尼小于同半径的圆盘微谐振器。附图说明图1为本技术的结构示意图图2为本技术的截面示意图图3为本技术的外部激励示意图图4为本技术高度系数改变的结构示意图具体实施方式下面结合实例和说明书附图对本技术进一步说明。如图1所示,本技术的低热弹性阻尼鼓膜仿生微谐振器件,包括:谐振体(1)和基底(2)。谐振体(1)四周边缘固定在基底(2)上,形成固定约束。谐振体(1)为鼓膜仿生结构,形状上近似于人体鼓膜。利用一阶贝塞尔函数获得谐振体(1)的轮廓曲线,并给定一定厚度,使其绕固定轴旋转形成谐振体(1)。基于MEMS器件的尺寸大小,本技术中的低热弹性阻尼鼓膜仿生结构,以实际鼓膜结构参数为基准,缩小一定倍数,保持半径,高度,厚度对应成比例。如图3所示,在半径中点处施加一个与一阶固有频率接近的法向外部激励,谐振体产生振动,最大振幅出现在半径中点偏向边缘的环形区域,中轴线附近振幅很小。弯曲应变和拉伸应变主要发生在振幅较大的区域,涉及范围有限。同半径的圆盘谐振器在相同激励下振动时,从中心到边缘都有明显弯曲应变。所以在固有频率附近,本技术的鼓膜仿生结构微谐振器的热弹性阻尼明显小于圆盘式谐振器。在约束不变的情况下,改变鼓膜仿生结构方程的高度系数C,可以获得弧度不同的结构。以图4为例,减小高度系数C,使谐振器高度降低,曲率变小,但相较于圆盘,依然具有一定仿生结构优势。本文档来自技高网...

【技术保护点】
1.一种低热弹性阻尼的鼓膜仿生微谐振器件,其特征在于,该器件包括低热弹性阻尼的谐振体(1)和基底(2),所述的谐振体(1)厚度均匀,四周边缘固定在基底(2)上,谐振体(1)为鼓膜仿生结构,谐振体(1)的外轮廓是由一阶贝塞尔函数获得谐振体轮廓曲线且通过该轮廓曲线绕固定轴旋转而形成的。

【技术特征摘要】
1.一种低热弹性阻尼的鼓膜仿生微谐振器件,其特征在于,该器件包括低热弹性阻尼的谐振体(1)和基底(2),所述的谐振体(1)厚度均匀,四周边缘...

【专利技术属性】
技术研发人员:周凯台永鹏陈宁
申请(专利权)人:南京林业大学
类型:新型
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1