一种飞机周期性大功率密度热载荷的喷雾冷却系统技术方案

技术编号:20165349 阅读:22 留言:0更新日期:2019-01-19 00:18
本发明专利技术涉及一种飞机周期性大功率密度热载荷的喷雾冷却系统和方法,包括喷雾冷却子系统和末端冷却回路子系统。喷雾冷却子系统通过喷雾工质雾化喷洒在热源表面,利用引射器将吸热后的工质抽吸到相变换热器,将热源端的热量高效地转移到整个相变材料内部。末端冷却回路子系统对相变材料换热器中的冷却工质进行持续冷却,通过初级换热器预冷,之后根据所需散热负荷的大小,控制燃油换热器和冲压空气换热器的切换,实现系统与外界的散热。本发明专利技术将飞机航电设备产生的周期性大功率密度的热量吸收,将峰值发热功率散发的热量暂时储存起来,起到关键的缓冲作用,使喷雾冷却系统以较小的体积达到了理想的散热效果,节省了成本,提高了可靠性。

【技术实现步骤摘要】
一种飞机周期性大功率密度热载荷的喷雾冷却系统
本专利技术属于电子温控领域,特别涉及一种飞机周期性大功率密度热载荷的喷雾冷却系统。
技术介绍
随着飞机航电功能的不断增强,其载有的电子设备数量越来越多,设备的功率也越来越大,而一旦设备工作产生的热量不能得到及时的排散,设备工作的温度降急剧增加,使其工作性能大为降低。随着对飞行任务要求的提高,出现了一系列具有高热流密度、短时间间歇工作的大功率组件,比如机载雷达、激光武器和机动飞行控制系统等。这类系统的短时间峰值功率大大超过了平均发热量,峰值发热功率下运行时由于散热量不足而导致电子设备等温度上升过高超过其正常的安全工作温度,使得其热可靠性显著降低并会降低电子产品的效率,稳定性和寿命,甚至引起失效,起火和爆炸。小型化、多功能化以及集成化使得电子产品的“热障”问题日益凸显。因此,有效的热管理技术对于电子产品的设计至关重要。喷雾冷却是指液体工质在压力驱动下,通过雾化喷嘴或者雾化装置强制雾化成为微米级的液滴后被强制喷射到冷却介质表面实现冷却的过程。喷雾冷却具有换热性能强、换热温差小以及冷却介质需求量低等特点,其可实现针对某较小面积而有较高散热要求的高效散热。喷雾冷却技术分为:(1)单工质喷雾冷却。该技术通过液体泵使液体产生压力后,通过单工质喷嘴喷射出液体;(2)双工质喷雾冷却。该技术借助于高压压缩空气,采用空气雾化喷嘴,气液汇合后由喷嘴喷射成雾状射流。
技术实现思路
通常情况下,雾化工质吸收热量后需要冷却循环将其恢复初始状态,然而,若热载荷呈1MW-1KW周期性变化,每种状态维持数秒时,常规情况下需针对最高热载荷工况设计较高冷却能力的冷却回路,会导致冷却回路体积过大,成本过高,可靠性降低。相变材料散热是一种被广泛应用的被动式热管理技术。所谓相变材料散热,是指利用相变材料在相变时吸收潜热而自身温度不变或变化较小的特性,来吸收电子元器件散发的热量并保证电子器件温度不会过高的散热技术。它具有无功耗,无噪音和无震动,维护费用低,结构紧凑等优势。传统的用于电子产品散热的相变材料主要包括石蜡、熔融盐和其他有机物。这些相变材料普遍存在的缺陷是其热导率低,一般在1W/m/K以下,导致热量不能被高效的传递和吸收,因而近些年涌现出新型相变材料如低熔点金属,其热导率是传统相变材料的几十倍,且单位体积的相变潜热值高。但面对极端热流密度情况时,新型相变材料仍达不到满意效果。比如,当需要散走的热量达到兆瓦级别时,由于相变材料导热系数的限制,必然会在内部形成较大的温度梯度,此时相变材料远离热源的部位实际上并未发挥吸热作用,散热效果并不好。总之,上述散热方法在性能上满足某方面需求时,又会带来其他方面的问题,以上所述的喷雾冷却装置和相变材料散热就面临着各自的局限性。现有领域中较为缺乏多能力的散热技术。根据本专利技术的一个方面,提供了一种飞机周期性大功率密度热载荷的喷雾冷却系统,其特征在于包括:涡轮、第一至第四三通流量阀、第一引射器、第二引射器、喷雾装置、相变材料换热器、温度传感器、气液分离器、初级换热器、第一至第五切换阀门、驱动泵、燃油换热器、冲压空气换热器、储液器、过滤器、控制单元,其中,发动机引气而来的高温高压气体分为两路,一路通过涡轮膨胀降温成为低温低压的气体,另一路为直接来自发动机引气的高温高压气体,通过第一至第四三通流量阀控制两路气体的混合比,混合后的气体被连接到喷雾装置中的喷嘴,作为喷雾气源,喷雾装置用于通过喷嘴的引射作用,使液体工质和喷雾气源混合,而使工质雾化形成雾化工质,从而吸收热源热量,第一引射器被用来抽吸雾化工质,使雾化工质进入相变材料换热器进行散热,相变材料换热器用于储存峰值热载荷时喷雾工质放出的热量,气液分离器用于把雾化工质中的气体与液体分离开,第二引射器用于借助抽吸作用而使气液分离器分离出的气体从气液分离器排出,气液分离器分离出的液体回到储液器,初级换热器用于对经过相变材料换热器的末端工质进行初步冷却,第一至第五切换阀门用于通过其切换而使末端工质在泵驱动下有选择地进入燃油换热器和/或冲压空气换热器,并随后回到相变材料换热器。附图说明图1是本专利技术飞机周期性大功率密度热载荷的喷雾冷却系统结构示意图;图2是本专利技术中末端冷却回路子系统的操作流程图;图3是引射器沿长度方向的剖视图;具体实施方式为解决现有技术中的上述技术问题,本专利技术提出了一种飞机周期性大功率密度热载荷的喷雾冷却系统,从而延长电子设备的工作时间,提高电子设备可靠性与稳定性,并在一定程度上减小冷却系统体积,降低冷却系统成本。如图1所示,根据本专利技术的一个实施例的飞机周期性大功率密度热载荷的喷雾冷却系统包括涡轮(1)、第一至第四三通流量阀(201至204)、第一引射器(301)、第二引射器(302)、喷雾装置(4)、相变材料换热器(5)、温度传感器(6)、气液分离器(7)、初级换热器(8)、第一至第五切换阀门(901至905)、驱动泵(10)、燃油换热器(11)、冲压空气换热器(12)、储液器(13)、过滤器(14)、控制单元(15)。发动机引气与所述涡轮(1)膨胀降温后的气体,通过控制所述第一至第四三通流量阀(201至204)两进口的开度,使两股气体成一定比例混合后分别到达三处:喷雾装置(4)、第一引射器(301)和初级换热器(8)。所述喷雾冷却系统包括喷雾冷却子系统和末端冷却回路子系统。喷雾冷却子系统中,将发动机引气、涡轮(1)膨胀降温的气体按照一定的混合比进行混合,混合气体作为喷雾气源,利用第一引射器(301)来抽吸雾化工质,使喷雾装置(4)内保持负压。在相变材料换热器(5)进行工质的散热,储存热载荷达到峰值时的散热量。借助第二引射器(302)的抽吸作用,气体从气液分离器(7)直接排出,液体回到储液器(13),接着进入过滤器(14)并过滤掉喷雾工质中的杂物,通过喷雾装置(4)中喷嘴的引射作用,液体工质和喷雾气源混合形成低温喷雾工质,接着进行喷雾循环。末端冷却回路子系统中,进行冷却回路的持续散热,通过初级换热器(8)对相变材料换热器(5)输送的冷却工质进行初步冷却,接着通过控制单元(15)根据温度传感器(6)的温度信号对第一至第五切换阀门(901至905)进行控制,使冷却工质在泵(10)驱动下选择性地切换进入燃油换热器(11)或冲压空气换热器(12)进行散热,散热后的工质最终回到相变材料换热器(5)。根据本专利技术的一个实施例,所述第一引射器(301)、第二引射器(302)为定压混合引射器,包括连接段、吸入室、喷嘴、混合室、扩压室及接头,可采用诸如304不锈钢等作为材料。所述第一引射器(301)兼具引射和基本负荷冷却的功能。所述喷雾装置(4)至少采用一个喷嘴或采用多喷嘴的阵列,喷嘴具有引射能力,采用适宜温度的空气作为气体喷雾工质,采用水、乙醇、表面活性剂或制冷剂等作为液体喷雾工质,工质安全性好,无毒无害。所述喷雾装置(4)通过工质雾化吸收热源热量。所述相变材料换热器(5)用于储存峰值热载荷时喷雾工质放出的热量。根据本专利技术的一个实施例,相变材料换热器(5)采用PAO冷却工质(聚α烯烃合成油)作为冷却工质。所述相变材料为低熔点金属材料等新型相变材料和/或石蜡、熔融盐等传统相变材料。所述相变材料,用于吸收热量并升温,温度达到其熔点后本文档来自技高网...

【技术保护点】
1.一种飞机周期性大功率密度热载荷的喷雾冷却系统,其特征在于包括:涡轮(1)、第一至第四三通流量阀(201至204)、第一引射器(301)、第二引射器(302)、喷雾装置(4)、相变材料换热器(5)、温度传感器(6)、气液分离器(7)、初级换热器(8)、第一至第五切换阀门(901至905)、驱动泵(10)、燃油换热器(11)、冲压空气换热器(12)、储液器(13)、过滤器(14)、控制单元(15),其中,发动机引气而来的高温高压气体分为两路,一路通过涡轮(1)膨胀降温成为低温低压的气体,另一路为直接来自发动机引气的高温高压气体,通过第一至第四三通流量阀(201至204)控制两路气体的混合比,混合后的气体被连接到喷雾装置(4)中的喷嘴,作为喷雾气源,喷雾装置(4)用于通过喷嘴的引射作用,使液体工质和喷雾气源混合,而使工质雾化形成雾化工质,从而吸收热源热量,第一引射器(301)被用来抽吸雾化工质,使雾化工质进入相变材料换热器(5)进行散热,相变材料换热器(5)用于储存峰值热载荷时喷雾工质放出的热量,气液分离器(7)用于把雾化工质中的气体与液体分离开,第二引射器(302)用于借助抽吸作用而使气液分离器(7)分离出的气体从气液分离器(7)排出,气液分离器(7)分离出的液体回到储液器(13),初级换热器(8)用于对经过相变材料换热器(5)的末端工质进行初步冷却,第一至第五切换阀门(901至905)用于通过其切换而使末端工质在泵(10)驱动下有选择地进入燃油换热器(11)和/或冲压空气换热器(12),并随后回到相变材料换热器(5)。...

【技术特征摘要】
1.一种飞机周期性大功率密度热载荷的喷雾冷却系统,其特征在于包括:涡轮(1)、第一至第四三通流量阀(201至204)、第一引射器(301)、第二引射器(302)、喷雾装置(4)、相变材料换热器(5)、温度传感器(6)、气液分离器(7)、初级换热器(8)、第一至第五切换阀门(901至905)、驱动泵(10)、燃油换热器(11)、冲压空气换热器(12)、储液器(13)、过滤器(14)、控制单元(15),其中,发动机引气而来的高温高压气体分为两路,一路通过涡轮(1)膨胀降温成为低温低压的气体,另一路为直接来自发动机引气的高温高压气体,通过第一至第四三通流量阀(201至204)控制两路气体的混合比,混合后的气体被连接到喷雾装置(4)中的喷嘴,作为喷雾气源,喷雾装置(4)用于通过喷嘴的引射作用,使液体工质和喷雾气源混合,而使工质雾化形成雾化工质,从而吸收热源热量,第一引射器(301)被用来抽吸雾化工质,使雾化工质进入相变材料换热器(5)进行散热,相变材料换热器(5)用于储存峰值热载荷时喷雾工质放出的热量,气液分离器(7)用于把雾化工质中的气体与液体分离开,第二引射器(302)用于借助抽吸作用而使气液分离器(7)分离出的气体从气液分离器(7)排出,气液分离器(7)分离出的液体回到储液器(13),初级换热器(8)用于对经过相变材料换热器(5)的末端工质进行初步冷却,第一至第五切换阀门(901至905)用于通过其切换而使末端工质在泵(10)驱动下有选择地进入燃油换热器(11)和/或冲压空气换热器(12),并随后回到相变材料换热器(5)。2.根据权利要求1所述的喷雾冷却系统,其特征在于:所述第一引射器(301)、第二引射器(302)为定压混合引射器,包括连接段、吸入室、喷嘴、混合室、扩压室及接头,所述第一引射器兼具引射和基本负荷冷却的功能。3.根据权利要求1所述的喷雾冷却系统,其特征在于:所述喷雾装置(4)采用至少一个喷嘴,喷嘴具有引射能力,所述喷雾装置(4)采用适宜温度的空气作为气体喷雾工质,采用从水、乙醇、表面活性剂和制冷剂中选出的一种液体作为液体喷雾工质。4.根据权利要求1所述的喷雾冷却系统,其特征在于:所述相变材料换热器(5)采用PAO冷却工质作为冷却工质;所述相变材料为从以下材料中选出的一种:低熔点金属相变材料,石蜡,熔融盐。5.根据权利要求1所述的喷雾冷却系统,其特征在于:所述相变材料换热器(5)后接一初级换热器(8),通过发动机引气与涡轮(1)降温混合后的气体作为热沉进行冷却。6.根据权利要求1所述的喷雾冷却系统,其特征在于:所述初级换热器(8)下游设有燃油换热器(11)、冲压空气换热器(12)和第一至第五切换阀门(901至905),根据温度传感器(6)传给控制单元(15)的信号,控制末端冷却回路的流动路径。7.根据权利要求1所述的喷雾冷却系统,其特征在于:...

【专利技术属性】
技术研发人员:李运泽李超熊凯王霁翔毛羽丰李恩辉李佳欣
申请(专利权)人:北京航空航天大学
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1