一种地下空洞智能化充填方法技术

技术编号:19380890 阅读:33 留言:0更新日期:2018-11-09 23:18
本发明专利技术公开了一种地下空洞智能化充填方法,包括充填准备、地下空洞内腔扫描、充填数据建模、3D打印充填等步骤。在探测机器人单元完成对地下空洞的扫描后构建地下空洞三维空间模型,集中电控单元的中央控制计算机对其外部进行施加应力场计算分析,并以地下空洞三维空间模型为基础、根据施加应力场计算分析结果和输入的安全系数依次对其内部表面的应力集中点位置构建支护模型生成空间三维支护模型,并生成3D打印路径和打印基准坐标,然后3D打印机器人单元在地下空洞内部3D打印空间三维支护实体,可以实现可控的支护质量和可控的充填量、较高的充填效率和较高的安全性,甚至可以实现空间再利用,特别适用于地下空洞的充填治理作业。

An intelligent filling method for underground cavity

The invention discloses an intelligent filling method for underground voids, including filling preparation, scanning of underground voids, filling data modeling, 3D printing and filling, etc. The three-dimensional space model of underground voids is constructed after the detection robot unit has finished scanning the underground voids. The central control computer of the centralized electronic control unit calculates and analyses the stress field applied to the outside of the voids. Based on the three-dimensional space model of the underground voids, the analysis results and the input safety factors are calculated and analyzed according to the applied stress field. In turn, the support model is constructed to generate three-dimensional support model for the stress concentration point on its inner surface, and the 3D printing path and the printing reference coordinates are generated. Then the 3D printer robot unit prints three-dimensional support entity in the underground cavity, which can achieve controllable support quality, controllable filling quantity and high quality. Filling efficiency and high safety can even realize space reuse, especially suitable for the filling treatment of underground voids.

【技术实现步骤摘要】
一种地下空洞智能化充填方法
本专利技术涉及一种充填方法,具体是一种针对如煤矿井下煤炭采空区、煤炭地下气化过程中形成的大面积煤层燃空区等人为岩土活动产生的地下空洞或者天然地质运动在地表下产生的一系列空洞等自然地下空洞的智能化充填系统的充填方法,属于地下工程

技术介绍
地下空洞是指地表以下被岩层覆盖的空间,一般是指空间较大的地下空腔。人为岩土活动如在煤矿开采中地下开采占世界煤矿生产的60%,而地下开采过程中将地下煤炭或煤矸石等开采完成后往往留下大面积的煤炭采空区形成地下空洞;煤炭地下气化实质是只提取煤中含能组分、变物理采煤为化学采煤,是将处于地下的煤炭进行有控制地燃烧,通过对煤的热作用及化学作用产生可燃气体的过程,煤炭地下气化技术不仅可以回收矿井遗弃的煤炭资源,而且还可以用于开采井工难以开采或开采经济性、安全性较差的薄煤层、深部煤层、“三下”压煤和高硫、高灰、高瓦斯煤层,虽然煤炭地下气化燃烧后的灰渣留在地下,但煤炭地下气化过程中也会形成的大面积煤层燃空区地下空洞;另外,天然地质运动在地表下也会产生一系列地下空洞。随着我国经济建设的快速发展,地下资源开采和地下空间开发利用的重要性日益凸显,地下空洞的存在使得地下资源的安全开采、地下空间的开发利用面临着严重的安全问题。特别是随着地下岩土工程人为岩土活动的向深部进行,在矿体开采后采场的原始应力状态被破坏,从而致使应力重新分布,在上覆压力和地下水等因素的作用下,地下空洞极易发生如片帮、冒顶、突水、地震、岩爆、冲击地压、地面塌陷、地面沉降、地裂缝以及由其导致的滑坡、泥石流、地表植被破坏等多种形式的地质灾害,地下空洞已经成为制约地下工程发展的一个重要难题。现阶段我国对于地下空洞治理通常采取全部垮落法、充填法、支撑封闭处理法。其中全部垮落法和支撑封闭处理法均会造成一定程度的地表塌陷,因此全部垮落法和支撑封闭处理法治理地下空洞的使用条件较严格,通常要求:①地下空洞的矿石或围岩极稳固,矿体厚与延深不大,埋藏不深,地表允许崩落;②埋藏较深的分散孤立的地下空洞,需离主要矿体或生产区较远、且上部无作业区。而充填法则适用于地表不允许大面积塌陷的情形,充填法是用充填料支撑围岩以减缓或阻止围岩的变形、保持围岩的相对稳定。充填法是目前地下空洞治理最常用的方法。现有的针对地下空洞的充填方法通常是利用地表中露天剥离的废石、开采废石或选矿尾砂作为主要充填骨料,建立充填系统,然后通过地下空洞的钻孔、天井或充填管道将充填料自流(或加压)充填至地下空洞,将地下空洞的空腔进行完全充填。虽然这种传统的充填方式能够实现保持围岩相对稳定的目的,但一方面,传统自流方式的充填方式无法控制充填质量,而传统加压充填方式通常采用占用空间较大的输送设备和夯实设备,且均需操作人员人工操作控制充填和夯实,充填效率较低;另一方面,传统的干式充填的方式充填后充填骨料颗粒之间依然存在一定的间隙,而传统的湿式充填的方式充填后充填体通常会存在一定的压缩沉降,因此传统的充填方式阻止岩石移动的能力有限;再一方面,根据地下空洞的具体位置及形状、应力情况进行数据分析的结果,往往只需对应力集中点位置进行相应方向的支护即可满足支护要求、无需进行空腔的完全充填进行支护,鉴于充填法本身就存在施工难度大、成本高、作业安全性差等缺点,因此盲目地进行完全充填势必造成资源的浪费和成本的提高,同时,完全充填的方式使地下空洞的空腔空间无法进行利用。
技术实现思路
针对上述问题,本专利技术提供一种地下空洞智能化充填方法,自动化程度高,可以在实现对地下空洞内部进行有效支护的前提下实现节省资源、降低充填成本,特别适用于地下空洞的充填治理作业。为实现上述目的,所使用的地下空洞智能化充填系统包括探测机器人单元、3D打印机器人单元和集中电控单元;所述的探测机器人单元包括全地形行走底盘、探测机械臂和车载电控装置;全地形行走底盘设置在探测机器人单元的底部,全地形行走底盘包括电控驱动机构和转向控制机构;探测机械臂的底端安装在全地形行走底盘上,探测机械臂的顶端设有探测装置,探测装置包括探测头,探测头包括距离传感器、扫描仪、陀螺仪、探测头角度定位控制驱动,探测头角度定位控制驱动至少包括沿左右水平方向为中轴线旋转移动的A坐标旋转驱动机构和沿前后水平方向为中轴线旋转移动的B坐标旋转驱动机构;车载电控装置固定安装在全地形行走底盘上,车载电控装置包括工业控制计算机、探测机器人行走控制回路、探测头探测角度控制回路,工业控制计算机分别与全地形行走底盘的电控驱动机构和转向控制机构电连接,工业控制计算机与探测头的探测头角度定位控制驱动电连接;所述的3D打印机器人单元包括全地形行走底盘、打印机械臂、打印材料输入装置和打印电控装置;全地形行走底盘设置在3D打印机器人单元的底部,全地形行走底盘包括电控驱动机构和转向控制机构;打印机械臂安装在全地形行走底盘上,打印机械臂包括打印机械臂驱动,打印机械臂驱动至少包括控制打印机械臂左右水平方向移动的X坐标驱动机构、控制打印机械臂前后水平方向移动的Y坐标驱动机构、控制打印机械臂竖直方向移动的Z坐标驱动机构,打印机械臂的末节上设有3D打印装置,3D打印装置包括3D打印喷头;打印材料输入装置包括打印材料泵入机构,打印材料泵入机构的输入端与打印材料供给子单元连接,打印材料供给子单元供应打印材料,打印材料泵入机构的输出端与3D打印喷头通过打印材料输出管路连接;打印电控装置固定安装在全地形行走底盘上,打印电控装置包括工业控制计算机、3D打印机器人行走控制回路、3D打印喷头位置控制回路、打印材料泵入机构控制回路,工业控制计算机分别与全地形行走底盘的电控驱动机构和转向控制机构电连接,工业控制计算机分别与打印机械臂驱动、打印材料泵入机构电连接;所述的集中电控单元包括中央控制计算机、探测控制回路、数据建模回路、探测机器人位置反馈修正回路、3D打印控制回路,中央控制计算机分别与探测头的距离传感器、扫描仪、陀螺仪电连接,中央控制计算机分别与车载电控装置的工业控制计算机和打印电控装置的工业控制计算机电连接;充填方法具体包括以下步骤:a.充填准备:通过地质雷达探测地下空洞的大概位置后,在保证掘进贯通点附近的原始岩层的支护强度较大的前提下选择合适的掘进贯通点,通过掘进机经掘进贯通点掘进出与地下空洞贯通的巷道并对该巷道进行有效支护,然后将探测机器人单元和3D打印机器人单元置于与地下空洞连通的巷道内;b.地下空洞内腔扫描:集中电控单元控制探测控制回路、探测机器人位置反馈修正回路、数据建模回路开始工作,中央控制计算机发出指令使车载电控装置的工业控制计算机控制探测机器人单元向地下空洞内部步进并对地下空洞的内腔进行扫描后坐标回退至初始位置,中央控制计算机将平面扫描数据进行同一基准的拟合并三维建模后生成地下空洞三维空间模型,然后进行存储;c.充填数据建模:中央控制计算机根据输入的地下空洞外围环境地质数据对地下空洞三维空间模型的外部进行施加应力计算分析,并对地下空洞三维空间模型的稳定性、应力、位移、裂隙、渗透性、声特性、光特性、电特性、磁特性和结构特性参数的演化过程进行计算分析,并以地下空洞三维空间模型为基础、根据施加应力场计算分析结果和输入的安全系数依次对地下空洞三维空间模型内部表面的应力集本文档来自技高网
...

【技术保护点】
1.一种地下空洞智能化充填方法,所使用的地下空洞智能化充填系统包括探测机器人单元(1)、3D打印机器人单元(2)和集中电控单元(3);所述的探测机器人单元(1)包括全地形行走底盘、探测机械臂(11)和车载电控装置(12);全地形行走底盘设置在探测机器人单元(1)的底部,全地形行走底盘包括电控驱动机构和转向控制机构;探测机械臂(11)的底端安装在全地形行走底盘上,探测机械臂(11)的顶端设有探测装置,探测装置包括探测头(13),探测头(13)包括距离传感器、扫描仪、陀螺仪、探测头角度定位控制驱动,探测头角度定位控制驱动至少包括沿左右水平方向为中轴线旋转移动的A坐标旋转驱动机构和沿前后水平方向为中轴线旋转移动的B坐标旋转驱动机构;车载电控装置(12)固定安装在全地形行走底盘上,车载电控装置(12)包括工业控制计算机、探测机器人行走控制回路、探测头探测角度控制回路,工业控制计算机分别与全地形行走底盘的电控驱动机构和转向控制机构电连接,工业控制计算机与探测头(13)的探测头角度定位控制驱动电连接;所述的3D打印机器人单元(2)包括全地形行走底盘、打印机械臂(21)、打印材料输入装置(22)和打印电控装置(23);全地形行走底盘设置在3D打印机器人单元(2)的底部,全地形行走底盘包括电控驱动机构和转向控制机构;打印机械臂(21)安装在全地形行走底盘上,打印机械臂(21)包括打印机械臂驱动,打印机械臂驱动至少包括控制打印机械臂左右水平方向移动的X坐标驱动机构、控制打印机械臂前后水平方向移动的Y坐标驱动机构、控制打印机械臂竖直方向移动的Z坐标驱动机构,打印机械臂(21)的末节上设有3D打印装置,3D打印装置包括3D打印喷头(24);打印材料输入装置(22)包括打印材料泵入机构,打印材料泵入机构的输入端与打印材料供给子单元连接,打印材料供给子单元供应打印材料,打印材料泵入机构的输出端与3D打印喷头(24)通过打印材料输出管路连接;打印电控装置(23)固定安装在全地形行走底盘上,打印电控装置(23)包括工业控制计算机、3D打印机器人行走控制回路、3D打印喷头位置控制回路、打印材料泵入机构控制回路,工业控制计算机分别与全地形行走底盘的电控驱动机构和转向控制机构电连接,工业控制计算机分别与打印机械臂驱动、打印材料泵入机构电连接;所述的集中电控单元(3)包括中央控制计算机、探测控制回路、数据建模回路、探测机器人位置反馈修正回路、3D打印控制回路,中央控制计算机分别与探测头(13)的距离传感器、扫描仪、陀螺仪电连接,中央控制计算机分别与车载电控装置(12)的工业控制计算机和打印电控装置(23)的工业控制计算机电连接;其特征在于,充填方法具体包括以下步骤:a.充填准备:通过地质雷达探测地下空洞的大概位置后,在保证掘进贯通点附近的原始岩层的支护强度较大的前提下选择合适的掘进贯通点,通过掘进机经掘进贯通点掘进出与地下空洞贯通的巷道并对该巷道进行有效支护,然后将探测机器人单元(1)和3D打印机器人单元(2)置于与地下空洞连通的巷道内;b.地下空洞内腔扫描:集中电控单元(3)控制探测控制回路、探测机器人位置反馈修正回路、数据建模回路开始工作,中央控制计算机发出指令使车载电控装置(12)的工业控制计算机控制探测机器人单元(1)向地下空洞内部步进并对地下空洞的内腔进行扫描后坐标回退至初始位置,中央控制计算机将平面扫描数据进行同一基准的拟合并三维建模后生成地下空洞三维空间模型,然后进行存储;c.充填数据建模:中央控制计算机根据输入的地下空洞外围环境地质数据对地下空洞三维空间模型的外部进行施加应力计算分析,并对地下空洞三维空间模型的稳定性、应力、位移、裂隙、渗透性、声特性、光特性、电特性、磁特性和结构特性参数的演化过程进行计算分析,并以地下空洞三维空间模型为基础、根据施加应力场计算分析结果和输入的安全系数依次对地下空洞三维空间模型内部表面的应力集中点位置构建支护模型生成地下空洞空间三维支护模型并存储坐标位置信息,然后中央控制计算机进行3D打印路径规划和打印基准坐标规划,并存储3D打印路径和打印基准坐标;d.3D打印充填:3D打印控制回路开始工作,中央控制计算机发出指令使打印电控装置(23)的3D打印机器人行走控制回路开始工作,打印电控装置(23)的工业控制计算机根据3D打印路径控制3D打印机器人单元(2)的全地形行走底盘的电控驱动机构和转向控制机构动作使3D打印机器人单元(2)坐标移动至地下空洞内部对应空间三维支护模型坐标位置的设定位置,然后3D打印喷头位置控制回路开始工作,打印电控装置(23)的工业控制计算机根据3D打印路径控制打印机械臂(21)的打印机械臂驱动动作使3D打印喷头(24)坐标移动至打印基准坐标位置,打印材料泵入机构控制回路开始工作,打印电控装置(23)...

【技术特征摘要】
1.一种地下空洞智能化充填方法,所使用的地下空洞智能化充填系统包括探测机器人单元(1)、3D打印机器人单元(2)和集中电控单元(3);所述的探测机器人单元(1)包括全地形行走底盘、探测机械臂(11)和车载电控装置(12);全地形行走底盘设置在探测机器人单元(1)的底部,全地形行走底盘包括电控驱动机构和转向控制机构;探测机械臂(11)的底端安装在全地形行走底盘上,探测机械臂(11)的顶端设有探测装置,探测装置包括探测头(13),探测头(13)包括距离传感器、扫描仪、陀螺仪、探测头角度定位控制驱动,探测头角度定位控制驱动至少包括沿左右水平方向为中轴线旋转移动的A坐标旋转驱动机构和沿前后水平方向为中轴线旋转移动的B坐标旋转驱动机构;车载电控装置(12)固定安装在全地形行走底盘上,车载电控装置(12)包括工业控制计算机、探测机器人行走控制回路、探测头探测角度控制回路,工业控制计算机分别与全地形行走底盘的电控驱动机构和转向控制机构电连接,工业控制计算机与探测头(13)的探测头角度定位控制驱动电连接;所述的3D打印机器人单元(2)包括全地形行走底盘、打印机械臂(21)、打印材料输入装置(22)和打印电控装置(23);全地形行走底盘设置在3D打印机器人单元(2)的底部,全地形行走底盘包括电控驱动机构和转向控制机构;打印机械臂(21)安装在全地形行走底盘上,打印机械臂(21)包括打印机械臂驱动,打印机械臂驱动至少包括控制打印机械臂左右水平方向移动的X坐标驱动机构、控制打印机械臂前后水平方向移动的Y坐标驱动机构、控制打印机械臂竖直方向移动的Z坐标驱动机构,打印机械臂(21)的末节上设有3D打印装置,3D打印装置包括3D打印喷头(24);打印材料输入装置(22)包括打印材料泵入机构,打印材料泵入机构的输入端与打印材料供给子单元连接,打印材料供给子单元供应打印材料,打印材料泵入机构的输出端与3D打印喷头(24)通过打印材料输出管路连接;打印电控装置(23)固定安装在全地形行走底盘上,打印电控装置(23)包括工业控制计算机、3D打印机器人行走控制回路、3D打印喷头位置控制回路、打印材料泵入机构控制回路,工业控制计算机分别与全地形行走底盘的电控驱动机构和转向控制机构电连接,工业控制计算机分别与打印机械臂驱动、打印材料泵入机构电连接;所述的集中电控单元(3)包括中央控制计算机、探测控制回路、数据建模回路、探测机器人位置反馈修正回路、3D打印控制回路,中央控制计算机分别与探测头(13)的距离传感器、扫描仪、陀螺仪电连接,中央控制计算机分别与车载电控装置(12)的工业控制计算机和打印电控装置(23)的工业控制计算机电连接;其特征在于,充填方法具体包括以下步骤:a.充填准备:通过地质雷达探测地下空洞的大概位置后,在保证掘进贯通点附近的原始岩层的支护强度较大的前提下选择合适的掘进贯通点,通过掘进机经掘进贯通点掘进出与地下空洞贯通的巷道并对该巷道进行有效支护,然后将探测机器人单元(1)和3D打印机器人单元(2)置于与地下空洞连通的巷道内;b.地下空洞内腔扫描:集中电控单元(3)控制探测控制回路、探测机器人位置反馈修正回路、数据建模回路开始工作,中央控制计算机发出指令使车载电控装置(12)的工业控制计算机控制探测机器人单元(1)向地下空洞内部步进并对地下空洞的内腔进行扫描后坐标回退至初始位置,中央控制计算机将平面扫描数据进行同一基准的拟合并三维建模后生成地下空洞三维空间模型,然后进行存储;c.充填数据建模:中央控制计算机根据输入的地下空洞外围环境地质数据对地下空洞三维空间模型的外部进行施加应力计算分析,并对地下空洞三维空间模型的稳定性、应力、位移、裂隙、渗透性、声特性、光特性、电特性、磁特性和结构特性参数的演化过程进行计算分析,并以地下空洞三维空间模型为基础、根据施加应力场计算分析结果和输入的安全系数依次对地下空洞三维空间模型内部表面的应力集中点位置构建支护模型生成地下空洞空间三维支护模型并存储坐标位置信息,然后中央控制计算机进行3D打印路径规划和打印基准坐标规划,并存储3D打印路径和打印基准坐标;d.3D打印充填:3D打印控制回路开始工作,中央控制计算机发出指令使打印电控装置(23)的3D打印机器人行走控制回路开始工作,打印电控装置(23)的工业控制计算机根据3D打印路径控制3D打印机器人单元(2)的全地形行走底盘的电控驱动机构和转向控制机构动作使3D打印机器人单元(2)坐标移动至地下空洞内部对应空间三维支护模型坐标位置的设定位置,然后3D打印喷头位置控制回路开始工作,打印电控装置(23)的工业控制计算机根据3D打印路径控制打印机械臂(21)的打印机械臂驱动动作使3D打印喷头(24)坐标移动至打印基准坐标位置,打印材料泵入机构控制回路开始工作,打印电控装置(23)的工业控制计算机控制打印材料输入装置(22)的打印材料泵入机构动作使泵出的打印材料经3D打印喷头(24)输出,然后打印电控装置(23)的工业控制计算机控制打印机械臂(21)的打印机械臂驱动动作使3D打印喷头(24)根据3D打印路径坐标移动进行3D打印,至3D打印路径终点时完成地下空洞空间三维支护模型的实体打印,3D打印机器人单元(2)回退至初始位置。2.根据权利要求1所述的地下空洞智能化充填方法,其特征在于,步骤b探测机器人单元(1)向地下空洞内部步进并对地下空洞的内腔进行扫描的过程中,中央控制计算机首先发出指令使车载电控装置(12)的探测头探测角度控制回路开始工作,车载电控装置(12)的工业控制计算机控制探测头(13)的探测头角度定位控制驱动动作使探测头(13)的扫描仪在基点扫描平面内360°范围内旋转进行以初始位置为参照坐标原点的基点平面扫描,探测头(13)的扫描仪同时将该基点平面扫描数据发送至中央控制计算机、同时探测头(13)的陀螺仪将参照坐标原点位置的扫描仪坐标位置数据发送至中央控制计算机,中央控制计算机将基点平面扫描数据和参照坐标原点位置的扫描仪坐标位置数据进行存储;然后中央控制计算机发出指令使车载电控装置(12)的探测机器人行走控制回路开始工作,车载电控装置(12)的工业控制计算机控制探测机器人单元(1)的全地形行走底盘的电控驱动机构和转向控制机构动作使探测机器人单元(1)整体以初始位置为参照坐标原点向地下空洞内部坐标移动步进一个设定步距并停止,然后探测头(13)的陀螺仪首先将该步进位置的扫描仪坐标位置数据发送至中央控制计算机,然后中央控制计算机进行存储的同时将该步进位置的陀螺仪反馈的扫描仪坐标位置数据将与参照坐标原点位置的扫描仪坐标位置数据进行比较、计算该步进位置的扫描仪坐标位置与参照坐标原点位置的扫描仪坐标位置之间的坐标偏差并存储,然后中央控制计算机根据该坐标偏差发出指令使车载电控装置(12)的探测头探测角度控制回路再次工作,车载电控装置(12)的工业控制计算机控制探测头(13)的探测头角度定位控制驱动动作使该步进位置的探...

【专利技术属性】
技术研发人员:马占国龚鹏唐军华张亮韩卓鹏刘飞王强张帆马云靖成世兴
申请(专利权)人:中国矿业大学
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1