热阻抗拓扑结构以及热功率滤波器制造技术

技术编号:17007897 阅读:187 留言:0更新日期:2018-01-11 04:07
本发明专利技术提供了一种热阻抗拓扑结构以及热功率滤波器,包括:受控热功率源、受控温度源、热阻抗单元和热功率滤波器,所述受控热功率源的第一端与所述热功率滤波器的第一端相连并构成所述热阻抗拓扑的热功率输入端口;所述受控热功率源的第二端与所述热阻抗单元的第一端相连并构成所述热阻抗拓扑的温度输出端口;所述热功率滤波器的第二端构成所述热阻抗拓扑的热功率输出端口;所述热阻抗单元的第二端与所述受控温度源的第一端相连,所述受控温度源的第二端构成所述热阻抗拓扑的温度输入端口。本发明专利技术可以准确描述导热体温度和热功率两个方面的热行为特性,从而可实现对功率半导体器件内外部动态温度更加准确的预测。

【技术实现步骤摘要】
热阻抗拓扑结构以及热功率滤波器
本专利技术涉及电力电子应用
,具体地,涉及热阻抗拓扑结构以及热功率滤波器,尤其是应用于功率半导体器件中的热阻抗拓扑和热功率滤波器。
技术介绍
功率半导体器件工作时需要承受较大的电压电流应力,是电力电子装置中最昂贵的元件和主要的热源。功率半导体器件的温度与整个电力电子系统的寿命和成本密切相关,同时也也是确保系统安全运行的重要信息。因而,如何准确地获得功率半导体器件工况条件下动态温度特性,对于保障系统的可靠运行并对其进行优化设计,十分必要。功率半导体器件的热行为包括温度和热功率两个方面,热行为不但和器件自生封装结构及材料有关,与之相连接的散热系统以及导热介质也会对器件的热行为产生显著影响。通常,器件的热行为是通过热阻R和热容C所构成热阻抗单元来表征。根据热阻、热容的不同连接方式,传统热阻抗单元主要分成Foster型和Cauer型两种。但是,大部分现有的热阻抗单元及其所构成的热阻抗网络仅适用于温度行为的描述,而不能准确表征器件的热功率行为。当考虑器件外部散热系统以及内部多芯片热偶和等复杂因素时,传统热阻抗单元和热阻抗网络往往不能准确预测功率半导体器件的实际温度特性。
技术实现思路
针对现有技术中的缺陷,本专利技术的目的是提供一种热阻抗拓扑结构以及热功率滤波器。第一方面,本专利技术提供一种热阻抗拓扑结构,包括:受控热功率源、受控温度源、热阻抗单元、热功率滤波器,所述受控热功率源的第一端与所述热功率滤波器的第一端相连并构成所述热阻抗拓扑的热功率输入端口;所述受控热功率源的第二端与所述热阻抗单元的第一端相连并构成所述热阻抗拓扑的温度输出端口;所述热功率滤波器的第二端构成所述热阻抗拓扑的热功率输出端口;所述热阻抗单元的第二端与所述受控温度源的第一端相连,所述受控温度源的第二端构成所述热阻抗拓扑的温度输入端口;或者,所述受控热功率源的第一端与所述热阻抗单元的第一端相连并构成所述热阻抗拓扑的热功率输入端口;所述受控热功率源的第二端与所述热功率滤波器的第一端相连;所述热阻抗单元的第一端构成所述热阻抗拓扑的温度输出端口;所述热功率滤波器的第二端构成所述热阻抗拓扑的热功率输出端口;所述热阻抗单元的第二端与所述受控温度源的第一端相连,所述受控温度源的第二端构成所述热阻抗拓扑的温度输入端口;其中:所述受控热功率源,用于对所述热功率输入端口的输入热功率信号进行耦合,并镜像与所述受控热功率源连接的两条支路中的热功率;所述受控温度源,用于对所述温度输入端口输入的温度信号进行耦合,并对所述热阻抗单元提供基准温度;所述热阻抗单元,用于表征所述热阻抗单元的第一端输入的热功率信号,与所述热阻抗单元的第一端和第二端温度差信号之间的关系;所述热功率滤波器,用于对热功率输入端口输入的热功率信号进行滤波处理。可选地,包括:热功率信号支路和温度信号支路,所述热功率信号支路用于预测所述热功率输出端口输出的热功率值;所述温度信号支路用于预测所述温度输出端口输出的温度值;具体的,在所述热功率信号支路中,所述热功率输入端口输入的热功率信号经所述受控热功率源的耦合以及所述热功率滤波器的滤波处理后从所述热功率输出端口输出;在所述温度信号支路中,所述温度输出端口输出的温度信号,由热功率输入端口输入的热功率流经所述热阻抗单元而产生的温差再叠加所述受控温度源的温度值。可选地,所述受控热功率源的第三端、所述受控温度源的第三端分别与两个参考温度端相连。可选地,所述温度输入端口输入的温度信号的值决定所述受控温度源的大小;所述热功率输入端口的输入值决定受控热功率源的大小。可选地,所述热阻抗单元包括:Foster型阻抗网络、Cauer型热阻抗网络、纯热阻网络、等效的频域传递函数、等效的软件代码、等效电路中的任意一种形式。可选地,所述热功率滤波器包括:单级低通滤波器、多级低通滤波器、等效的频域传递函数、等效的软件代码、等效电路中的任意一种形式。第二方面,本专利技术提供一种热功率滤波器,应用于如第一方面中任意一项所述的热阻抗拓扑结构中,包括:N阶级联低通滤波器,其中,N为大于等于1的整数;其中所述N阶级联低通滤波器中每一阶低通滤波器的特征频率的获取方法如下:S1:对功率半导体器件的S处施加一个阶跃热功率P,记录下热功率施加处S的温度随时间t变化的响应曲线TS(t),以及区别于S处的另一观测点M处的温度随时间变化的曲线TM(t),计算热功率施加处S和观测点M之间的时域热阻变化曲线ZS-M(t),计算公式如下:S2:用Foster型级联热阻抗网络的时域表达式来拟合热阻变化曲线Zs-M(t),得到L对R、C拟合参数;其中,Foster型级联热阻抗网络的时域表达式如下:式中:拟合曲线时根据温度测量的最小采样周期Tsample以及ZS-M(t)到达稳态的时间Tsteady,限定每对R、C拟合参数的乘积值于区间[Tsample,Tsteady]内,并限定拟合参数Ri>0;Ri表示第i个拟合热阻值,Ci表示第i个拟合热容值,L表示拟合参数的总对数,t表示时间;S3:检验拟合优度是否达标,如果不达标,则增加一对R、C拟合参数,更新L值,返回步骤S2;如果达标,则执行步骤S4;S4:如果拟合的多个R、C参数对中出现R值小于下限阈值的R、C参数对,则去除小于下限阈值所对应的R、C拟合参数对,更新L值,再将ZS-M(t)的时域表达式经过拉普拉斯变换转化为s域表达式:S5:将ZS-M(s)中的复频率s用2πj·10x替代,变为以x为变量的函数ZS-M(x),其中j为虚数单位,再对ZS-M(x)应用微分运算,得到D(x):式中:D(x)表示一个图形函数,表示二阶偏微分运算;找出图形函数D(x)在有效区间内n个极小值点,其中n≥1,得到极小值点处对应的x值,将所有极小值点对应的x值按由小到大顺序排序;S6:如果L=n,提取出n个特征频率,第i个特征频率fcr_i的计算公式如下流程结束;若L不等于n,则执行步骤S7;S7:用L级Foster型级联RC网络的时域表达式再次拟合热阻变化曲线Zs-M(t),限定拟合参数R>0,并且限定其中任意一对R、C拟合参数的乘积于以下区间范围内:式中:xn表示图形函数D(x)在n个极小值点处对应的最大的一个x值;限定剩余R、C拟合参数的乘积于以下区间范围内:获得乘积最小的一对拟合参数,记为Rcr和Ccr,根据提取出一个特征频率fcr_m;S8:更新ZS-M(t),从所拟合的Foster型级联热阻抗网络的时域表达式中去掉RcrCcr拟合参数所对应的项,则得到更新后的ZS-M(new)(t)式中:ZS-M(new)(t)表示更新后的热功率施加处S和观测点M之间的时域热阻变化曲线;更新L值,返回执行步骤S4。可选地,所述N阶级联低通滤波器的s域数学表达式为:式中,Q为提取出的所有特征频率个数;F(s)表示N阶级联低通滤波器的s域函数。可选地,所述N阶级联低通滤波器的增益为1。与现有技术相比,本专利技术具有如下的有益效果:1、本专利技术提供的热阻抗拓扑结构可以准确描述导热体热功率和温度两方面的热行为特性,从而在引入散热系统、导热介质、多芯片热偶和等复杂因素时,对功率半导体器件动态热行为更加准确而全面的预测。2、本专利技术提供的热阻抗拓扑结构可本文档来自技高网...
热阻抗拓扑结构以及热功率滤波器

【技术保护点】
一种热阻抗拓扑结构,其特征在于,包括:受控热功率源、受控温度源、热阻抗单元、热功率滤波器,所述受控热功率源的第一端与所述热功率滤波器的第一端相连并构成所述热阻抗拓扑的热功率输入端口;所述受控热功率源的第二端与所述热阻抗单元的第一端相连并构成所述热阻抗拓扑的温度输出端口;所述热功率滤波器的第二端构成所述热阻抗拓扑的热功率输出端口;所述热阻抗单元的第二端与所述受控温度源的第一端相连,所述受控温度源的第二端构成所述热阻抗拓扑的温度输入端口;或者,所述受控热功率源的第一端与所述热阻抗单元的第一端相连并构成所述热阻抗拓扑的热功率输入端口;所述受控热功率源的第二端与所述热功率滤波器的第一端相连;所述热阻抗单元的第一端构成所述热阻抗拓扑的温度输出端口;所述热功率滤波器的第二端构成所述热阻抗拓扑的热功率输出端口;所述热阻抗单元的第二端与所述受控温度源的第一端相连,所述受控温度源的第二端构成所述热阻抗拓扑的温度输入端口;其中:所述受控热功率源,用于对所述热功率输入端口的输入热功率信号进行耦合,并镜像与所述受控热功率源连接的两条热支路中的热功率;所述受控温度源,用于对所述温度输入端口输入的温度信号进行耦合,并对所述热阻抗单元提供基准温度;所述热阻抗单元,用于表征所述热阻抗单元的第一端输入的热功率信号,与所述热阻抗单元的第一端和第二端温度差信号之间的关系;所述热功率滤波器,用于对热功率输入端口输入的热功率信号进行滤波处理。...

【技术特征摘要】
1.一种热阻抗拓扑结构,其特征在于,包括:受控热功率源、受控温度源、热阻抗单元、热功率滤波器,所述受控热功率源的第一端与所述热功率滤波器的第一端相连并构成所述热阻抗拓扑的热功率输入端口;所述受控热功率源的第二端与所述热阻抗单元的第一端相连并构成所述热阻抗拓扑的温度输出端口;所述热功率滤波器的第二端构成所述热阻抗拓扑的热功率输出端口;所述热阻抗单元的第二端与所述受控温度源的第一端相连,所述受控温度源的第二端构成所述热阻抗拓扑的温度输入端口;或者,所述受控热功率源的第一端与所述热阻抗单元的第一端相连并构成所述热阻抗拓扑的热功率输入端口;所述受控热功率源的第二端与所述热功率滤波器的第一端相连;所述热阻抗单元的第一端构成所述热阻抗拓扑的温度输出端口;所述热功率滤波器的第二端构成所述热阻抗拓扑的热功率输出端口;所述热阻抗单元的第二端与所述受控温度源的第一端相连,所述受控温度源的第二端构成所述热阻抗拓扑的温度输入端口;其中:所述受控热功率源,用于对所述热功率输入端口的输入热功率信号进行耦合,并镜像与所述受控热功率源连接的两条热支路中的热功率;所述受控温度源,用于对所述温度输入端口输入的温度信号进行耦合,并对所述热阻抗单元提供基准温度;所述热阻抗单元,用于表征所述热阻抗单元的第一端输入的热功率信号,与所述热阻抗单元的第一端和第二端温度差信号之间的关系;所述热功率滤波器,用于对热功率输入端口输入的热功率信号进行滤波处理。2.根据权利要求1所述的热阻抗拓扑结构,其特征在于,包括:热功率信号支路和温度信号支路,所述热功率信号支路用于预测所述热功率输出端口输出的热功率值;所述温度信号支路用于预测所述温度输出端口输出的温度值;具体的,在所述热功率信号支路中,所述热功率输入端口输入的热功率信号经所述受控热功率源的耦合以及所述热功率滤波器的滤波处理后,从所述热功率输出端口输出;在所述温度信号支路中,所述温度输出端口输出的温度信号,由热功率输入端口输入的热功率流经所述热阻抗单元而产生的温差,再叠加所述受控温度源的温度值而产生。3.根据权利要求1所述的热阻抗拓扑结构,其特征在于,所述受控热功率源的第三端、所述受控温度源的第三端分别与两个参考温度端相连。4.根据权利要求1所述的热阻抗拓扑结构,其特征在于,所述温度输入端口输入值决定所述受控温度源的大小;所述热功率输入端口的输入值决定受控热功率源的大小。5.根据权利要求1-4中任意一项所述的热阻抗拓扑结构,其特征在于,所述热阻抗单元包括:Foster型阻抗网络、Cauer型热阻抗网络、纯热阻网络、等效的频域传递函数、等效的软件代码、等效电路中的任意一种形式。6.根据权利要求1-4中任意一项所述的热阻抗拓扑结构,其特征在于,所述热功率滤波器包括:单级低通滤波器、多级低通滤波器、等效的频域传递函数、等效的软件代码、等效电路中的任意一种形式。7.一种热功率滤波器,其特征在于,应用于如权利要求1-6中任一项所述的热阻抗拓扑结构中,包括:N阶级联低通滤波器,其中,N为大于等于1的整数;其中所述N阶级联低通滤波器中每一阶低通滤波器的特征频率的获取方法如下:S1:对功率半导体器件的S处施加一个阶跃热功率P,记录下热功率施加处S的温度随时间t变化的响应曲线TS(t),以及区别于S处的另一观测点M处的温度随时间变化的曲线TM(t),计算热功率施加处S和观测点M之间的时域热阻变化曲线ZS-M(t),计算公式如下:S2:用Foster型级联热阻抗网络的时域表达式来拟合热阻变化曲线Zs-M(t),得到L对R、C拟合参数;其中,Foster型级联热阻抗网络的时域表达式如下:

【专利技术属性】
技术研发人员:马柯
申请(专利权)人:上海交通大学
类型:发明
国别省市:上海,31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1