数字式高压直流电源控制系统技术方案

技术编号:13035715 阅读:152 留言:0更新日期:2016-03-17 11:24
本发明专利技术属于电源技术领域,特别涉及一种数字式高压直流电源控制系统。包括硬件部分和系统流程部分,硬件部分主要包括控制单元、DSP、驱动保护电路、全桥逆变电路、温度传感器、恒温控制电路、电流传感器、电流检测电路、电压互感器、电压反馈电路、通讯电路、上位机、显示单元和电网。本发明专利技术系统能够将电网的交流电转换成平稳的直流电,具有结构简单、可靠性好、可控性强的优点,同时具有温控、过流保护和电压线性调节的功能,符合直流电源数字化、模块化的发展趋势,适合在电力系统广泛应用。

【技术实现步骤摘要】

本专利技术属于电源
,特别涉及一种数字式高压直流电源控制系统
技术介绍
随着电力行业和制造技术的快速发展,直流设备在工业、航空、民用等领域的运用不断增加。高压直流电源的应用领域是非常广泛的,传统的高压电源常直接采用变压器直接升压整流的方式或者是采用倍压整流的方式来实现的。由于高压电源本身的电压性质以及控制的局限性,使得传统的高压直流电源自身存在诸多缺陷,不尽体积重量较大,电源系统的输出电压纹波很大,工作效率也不是很高,导致其应用具有一定的局限性。而随着现代电力电子技术的不断完善和发展,数字化、高频化、小型化以及模块化是高压直流电源发展的必然趋势。
技术实现思路
为了解决现有技术存在的技术问题,本专利技术提出一种数字式高压直流电源控制系统,目的是目的提供能够将电网的交流电转换成平稳的直流电,同时具有温控、过流保护和电压线性调节的功能的控制系统。本专利技术是通过以下技术方案来实现专利技术目的的: 数字式高压直流电源控制系统,包括硬件部分和系统流程部分,其中硬件部分是由控制单元的输出端和DSP的输入端相连接,驱动保护电路的输入端和DSP的PWM信号输出端相连接,全桥逆变电路的控制信号输入端和驱动保护电路的输出端相连接,全桥逆变电路的电源输入端和电网的输出端相连接,温度传感器固定在全桥逆变电路的功率器件表面,恒温控制电路的输入端和温度传感器的输出端相连接,恒温控制电路的输出端温和DSP的信号输入端相连接,全桥逆变电路输入端和输出端的导线穿心经过电流传感器,电流互感器的输出端和电流检测电路的输入端相连接,电流检测电路的输出端和DSP的信号输入端相连接,电压互感器的一次侧输入端和全桥逆变电路输入端和输出端并联,电压互感器的二次侧输出端和电压反馈电路的输入端相连接,电压反馈电路的输出端和DSP的信号输入端相连接,通讯电路的输入端和DSP的通讯接口相连接,通讯电路的输出端和上位机的通讯接口相连接,显示单元的输入端和DSP的信号输出端相连接。所述的全桥逆变电路7是由IGBT、电容C1-C4、电阻R1-R4和二极管D1-D4组成,其中IGBT管两两串联后并联组成桥式电路,电阻R1-R4和二极管D1-D4并联在于电容C1-C4串联组成缓冲电路,缓冲电路与IGBT的集电极和发射极并联,接线端子a、b为直流电压输出端子,连接在两个桥臂的两个IGBT之间;缓冲电路避免瞬态操作电压对IGBT管的冲击,降低IGBT的开关损耗,保护整流单元安全、可靠运行,在IGBT关断过程中,电容C1-C4通过二极管D1-D4充电,吸收关断过程产生的du/dt,在IGBT开通后,电容C1-C4两端的电压通过电阻R1-R4放电。所述的电流检测电路,需要测量导线从电流互感器的中心穿过,电流互感器的电源端分别于+15V和一 15V电源相连接,电流互感器的电源端的输出端与运算放大器LM324的正输入端相连接,电阻R6、电容C8并联后一端与运算放大器LM324的正输入端相连接,电阻R6、电容C8并联后的另一端与地相连接,运算放大器LM324的电源正输入端与5V稳压源相连接,运算放大器LM324的电源负输入端与地相连接,运算放大器LM324的电流信号输出端和DSP 5的信号输入端相连接。所述的电压反馈电路的电压反馈信号经过电阻R5到电压跟随器的正输入端,电阻R6、电容C5、C6和二极管D5并联后的一端与电阻R5到电压跟随器之间的线路相连接,电阻R6、电容C5、C6和二极管D5并联后的另一端与地相连接,电压跟随器的输出端与DSP 5的信号输入端相连接,电容C7的一端连接在电压跟随器的输出端与DSP 5支路,电容C7的另一端与地相连接;其中C5作用是滤除信号中的杂质,稳点电路输入电压,减小信号漂移,通常选取高频无感电容;电阻R5、R6起到分压作用,电压反馈电路测量电压等于电阻R6两端电压,其电压值为总电压的R6/R5+R6。所述的温度传感器的温度控制电路中温度传感器PTC的输出端与运算放大器Μ的正输入端相连接,运算放大器Μ的正输入端经过电阻R8与电源的负端相连接,运算放大器Μ的负输入端经过电阻R7与电源地相连接,电容C9、电阻R9并联后串连在运算放大器Μ的负输入端和信号输出端之间,运算放大器Μ的信号输出端经过电阻R0与运算放大器Ν的正输入端相连接,电阻R11串连在运算放大器Ν的正输入端和信号输出端之间,电容C10的两端分别与运算放大器N的正输入端及地相连接,电阻R12的两端分别与运算放大器N的负输入端及地相连接,电阻R12的两端分别与运算放大器N的负输入端及信号输出端相连接,运算放大器N的信号输出端经过电阻R14、发光二极管D6与场效应管Q5的控制端相连接,场效应管Q5两端分别与地、热电致冷器相连接。所述温度控制电路工作过程是:当温度值高于设定值时,热敏电阻PTC阻值变大,这时在运放Μ的同相输入端电压高于0V,信号经过放大后输出到Ν,使得运放Ν的同相输入端电压高于反相端,运放输出+5V的电压驱动场效应管Q5导通,热电制冷器开始工作降低系统温度,当温度达到正常温度时场效应管截止,热电制冷器停止工作。所述的系统流程部分包括系统主程序和中断子程序;主程序负责整个系统的初始化,包括指针、变量、寄存器、通讯模块、事件管理器、AD采集模块项目初始化;同时,还具有中断设置、循环等待、PID控制算法实现功能; 所述的整个系统的初始化包含系统时钟的配置、看门狗寄存器的设置、通用I/O 口的设置等;事件管理器初始化是指DSP各个定时器的设置和分配;在循环等待中需要完成的故障检测、控制单元输入扫描及同上位机之间通讯等。当高压直流电源的发生故障时,如IGBT的损坏、全桥逆变电路输出电流过大或输出功率过高时,都可能会带来安全隐患,因此需要专门设置故障反馈的中断子程序处理这些问题,通过封锁PWM的输出、断开外界电源,来保证系统的稳定性,避免发生安全事故。所述的系统主程序步骤如下: (1)开始; (2)初始化; (3)指针、变量和寄存器初始化; (4)通讯1?块初始化; (5)时间管理器初始化; (6)AD采集模块初始化; (7)设置中断入口,使能中断 (8 )等待中断响应,是执行步骤(9 ),否则执行步骤(8 ); (9)进入主循环。所述的中断子程序流程,具体步骤如下: (1)中断开始; (2)保护现场; (3)断开主回路、封锁PWM输出 (4)判断故障类型; (5)故障复位; (6)返回。本专利技术的优点及有益效果是: 本专利技术数字式高压直流电源控制系统能够将电网的交流电转换成平稳的直流电,具有结构简单、可靠性好、可控性强的优点,同时具有温控、过流保护和电压线性调节的功能,符合直流电源数字化、模块化的发展趋势,适合在电力系统的直流电力设备领域广泛应用。下面结合附图和具体实施例对本专利技术加以详细的说明。【附图说明】图1是本专利技术数字式高压当前第1页1 2 3 本文档来自技高网...

【技术保护点】
数字式高压直流电源控制系统,其特征是:包括硬件部分和系统流程部分,其中硬件部分是由控制单元(2)的输出端和DSP (5)的输入端相连接,驱动保护电路(6)的输入端和DSP (5)的PWM信号输出端相连接,全桥逆变电路(7)的控制信号输入端和驱动保护电路(6)的输出端相连接,全桥逆变电路(7)的电源输入端和电网(8)的输出端相连接,温度传感器(10)固定在全桥逆变电路(7)的功率器件表面,恒温控制电路(8)的输入端和温度传感器(10)的输出端相连接,恒温控制电路(9)的输出端温和DSP (5)的信号输入端相连接,全桥逆变电路(7)输入端和输出端的导线穿心经过电流传感器(12),电流互感器(12)的输出端和电流检测电路(11)的输入端相连接,电流检测电路(11)的输出端和DSP (5)的信号输入端相连接,电压互感器(14)的一次侧输入端和全桥逆变电路(7)输入端和输出端并联,电压互感器(14)的二次侧输出端和电压反馈电路(13)的输入端相连接,电压反馈电路(13)的输出端和DSP (5)的信号输入端相连接,通讯电路(3)的输入端和DSP (5)的通讯接口相连接,通讯电路(3)的输出端和上位机(4)的通讯接口相连接,显示单元(1)的输入端和DSP (5)的信号输出端相连接。...

【技术特征摘要】

【专利技术属性】
技术研发人员:郎福成张红奎秦燕朱剑锋马洪涛徐振乙邰晓雪
申请(专利权)人:国家电网公司国网辽宁省电力有限公司电力科学研究院
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1