一种基于马尔科夫链的图书推荐方法技术

技术编号:8453073 阅读:461 留言:0更新日期:2013-03-21 17:26
一种基于马尔科夫链的图书推荐方法,方法包括有:步骤一、查询用户的阅读历史数据,并基于朴素贝叶斯算法,计算用户的初始状态概率向量;步骤二、查询用户的当前阅读图书和所有未阅读图书,并根据所有用户对该用户的当前阅读图书和未阅读图书的喜欢和不喜欢状态,分别计算该用户当前阅读图书到每个未阅读图书的转移概率矩阵;步骤三、根据用户的初始状态概率向量、和用户当前阅读图书到未阅读图书的转移概率矩阵,分别计算用户从当前阅读图书转移到每个未阅读图书的状态概率向量,所述状态概率向量包括有用户对未阅读图书的喜欢状态概率,并据此向用户推荐未阅读图书。本发明专利技术属于网络应用技术领域,能根据用户的动态行为进行图书的个性化推荐。?

【技术实现步骤摘要】

本专利技术涉及,属于网络应用

技术介绍
随着移动、互联网技术的飞速发展,图书的数字化成为一个必然趋势。越来越多的图书阅读平台受到了用户的高度关注,并取得了迅猛发展,已经成为人们获取信息和知识的重要途径。图书阅读平台上通常拥有海量的数字图书资源,如何有效地利用这些丰富而宝贵的资源,让用户能够更快捷地找到并充分地利用它们就显得非常重要,因此图书的个性化智能推荐是图书阅读平台的一个很重要的功能。目前,图书的个性化智能推荐主要分为基于内容的图书推荐、协同过滤图书推荐、基于知识的图书推荐和组合图书推荐。基于内容的图书推荐根据用户的行为记录,建立符合用户口味的兴趣档案,根据推荐对象的内容特征匹配用户的兴趣档案,发现用户可能感兴趣的商品,常用于文本类的推荐,例如新闻和邮件等。协同过滤图书推荐是应用比较广泛的推荐方法,发现用户的相似用户,根据相似用户群体的行为信息对用户进行推荐。基于知识的图书推荐主要是根据行业内的一些专家意见进行推荐,往往是一定固定的推荐规则。组合图书推荐是综合利用各种推荐算法,把推荐算法的结果进行整合,形成更加全面的推荐结果。以上的推荐方法都是根据用户的历史行为记录的本文档来自技高网...

【技术保护点】
一种基于马尔科夫链的图书推荐方法,其特征在于,所述方法包括有:步骤一、查询用户的阅读历史数据,并基于朴素贝叶斯算法,计算用户的初始状态概率向量:???????????????????????????????????????????????????=(???,???),其中,???、???分别是用户对图书的喜欢、不喜欢状态,???是用户当前阅读图书的标签向量,???、???分别是用户对图书的喜欢、不喜欢状态概率;步骤二、查询用户的当前阅读图书和所有未阅读图书,并根据所有用户对该用户的当前阅读图书和未阅读图书的喜欢和不喜欢状态,分别计算该用户当前阅读图书到每个未阅读图书的转移概率矩阵;步骤三、根据...

【技术特征摘要】

【专利技术属性】
技术研发人员:廖建新郭伟东张雷赵贝尔崔晓茹
申请(专利权)人:杭州东信北邮信息技术有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1