本发明专利技术提供了一种风电出力时间序列建模方法,该方法可用于电力系统规划、电力系统可靠性评估、风电中长期调度等研究。该方法以历史风电出力时间序列为基础,首先对历史风电出力时间序列的特性进行分析,得到特定地点风电场风电出力所具备的波动特性等指标,然后对历史风电出力时间序列进行滤波处理,并进行风过程和片段划分,统计风过程转移概率和各片段概率分布,最后采用序贯抽样方法模拟重构风电出力时间序列,并对重构的时间序列进行检验验证。本发明专利技术对风电场的出力时间序列进行了准确评估,最大可能的模拟了风电出力特性,可用于风电容量可信度评估,准确定位风电在电力系统中的地位,指导电力系统调度运行。
【技术实现步骤摘要】
本专利技术属于新能源发电领域,涉及。
技术介绍
风电的快速发展给中国经济的发展注入了新的活力,然而也给电力系统的安全稳定运行带来了很大的挑战。 在电力系统规划方面,在风电存在很大不确定性的前提下如何确保规划的电力系统在未来能安全经济地运行是一个亟需解决的问题;风电出力随机变化,如何确定风电可信容量需要从随机性、系统调节能力等多方面考虑。现有研究趋势逐步从确定性分析方式向概率性分析方式转变,通过分析历史风电出力特性,应用随机生产模拟未来电力系统的运行,统计系统的各项运行指标。在电力系统运行方面,风电具有间歇性、波动性等不确定性特点,当电力系统缺少灵活的电源时,尤其对于中国北方电源绝大部分是火电的情形,电网无法应对风电的不确定性,为保证电力系统的安全稳定运行,不得不在某些迫不得已的情况下限制风电出力,大规模风电接入很大程度上改变了传统电力系统的运行方式,系统需要更加灵活的运行方式。从实时运行的角度需要根据风功率预测,基于决策支持系统进行优化调度,当前风功率预测主要包括超短期功率预测(提前4小时或更短)、短期功率预测(提前I天)、中长期功率预测(提前几天到I周),超短期和短期预测的精度较高,中长期预测的误差较大,更长时间尺度的预测已经不能用于电力系统的电力平衡;改善风电和电力系统协调运行水平的另一个方面是提高风电场的出力控制水平,改进风电场自身的调节能力,建设“电网友好型”风电场,实现风电出力的可控制性和可调度性。在电力系统可靠性方面,风电接入电力系统后由于其间歇性和波动性会严重影响电力系统的可靠性,需要有效评估风电接入后对电力系统的可靠性的影响。现有研究多为对风电时间序列进行建模,然后根据风电时间序列模型对电力系统运行进行蒙特卡洛抽样模拟,统计各项运行指标估计风电接入对电力系统可靠性的影响;这种完全随机的建模方法没有考虑到风电出力时间序列的时间关联性。风电接入对电力系统运行的影响主要是由于风电具有随机性、波动性等不确定性特点造成的,研究风电出力的随机性、波动性等不确定性特点有利于准确评估风电对电力系统安全稳定运行带来的影响,也可评估解决风电接入难题的措施的有效性,从而有方向性地采取相应的措施,提高电力系统风电利用率和运行安全稳定性,达到用最小的成本解决最多的风电接入难题的最终目的。
技术实现思路
针对现有技术的不足,本专利技术提供,对风电场的出力时间序列进行了准确评估,最大可能的模拟了风电出力特性,可用于风电容量可信度评估,准确定位风电在电力系统中的地位,指导电力系统调度运行本专利技术提供的,其改进之处在于,所述建模方法包括如下步骤(I)收集至少两年内时间尺度为15分钟的风电出力历史数据,对风电出力时间序列进行处理;(2)分析风电出力时间序列的特性;(3)对风电出力时间序列分割与统计;(4)采用序贯抽样方法,重构模拟风电时间序列;(5)验证模拟风电出力时间序列的可靠性。其中,步骤(I)对风电出力时间序列进行处理包括去除序列中的错误数据和补充缺失数据。 其中,步骤(2)分析风电出力时间序列的特性包括波动特性Cf、概率分布特性Cd、相关特性(;和风过程特性Cp。其中,步骤(3)对风电出力时间序列分割与统计是对风电出力时间序列进行滤波处理,将风电出力时间序列划分风过程和片段,统计风过程转换概率和片段概率分布,并计算滤波过程产生的误差。其中,步骤(4)采用序贯抽样方法,重构模拟风电时间序列包括如下步骤I)根据风过程转移概率序贯抽样模拟风过程序列;2)根据片段概率分布序贯抽样风过程内部片段;3 )叠加步骤(2 )所示波动特性Cf。其中,步骤(5)验证模拟风电出力时间序列的可靠性包括根据步骤(2)中风电出力时间序列的特性分析模拟风电出力时间序列的特性,若模拟风电时间序列的特性符合步骤(I)收集的历史数据的特性,则模拟风电出力时间序列符合风电实际运行情况,并将其用于系统分析,若不符合,则返回步骤(4)重新构造,直至特性符合历史数据。其中,所述波动特性Cf为短时间最大波动概率分布;短时间最大波动指短时间最大值与最小值的差值,若最大值出现在最小值之后则差值为正,若最大值出现在最小值之前则差值为负。其中,所述短时间为I分钟-40分钟内。其中,所述概率分布特性Cd指风电出力的概率分布,包括各出力水平的概率密度和累计概率分布。其中,所述相关特性Cr指风电出力时间序列的自相关函数和偏自相关函数。其中,所述风过程特性Cp指滤波后风电出力时间序列中超过某一出力L的子序列的个数。与现有技术比,本专利技术的有益效果为I.本专利技术模拟了未来风电出力的可能场景,可用于含风电的电力系统规划,提高规划电力系统的经济性和安全性。2.本专利技术对风电场的出力时间序列进行了准确评估,最大可能的模拟了风电出力特性,可用于风电容量可信度评估,准确定位风电在电力系统中的地位,指导电力系统调度运行。3.本专利技术是一种概率性方法,在风电出力存在不确定性的前提下取代确定性方法用于电力系统调峰裕度评估,可以指导电力系统调峰资源建设。4.本专利技术提供可靠的风电出力时间序列模型可替代现有历史数据复制方法,用于电力系统接纳风电能力评估,对风电接入水平及限电作出概率性评估,提高风电规划的经济性。5.本专利技术考虑了风电出力不同年份的差异性,用于电力系统电力电量平衡分析,保证网内各发电资源的经济性。 6.本专利技术考虑了风电出力时间序列前后相关性和风过程惯性,建立的风电出力时间序列模型符合风电实际运行过程。7.本专利技术通过特征指标检验验证风电时间序列重构的可靠性,保证风电时间序列重构结果符合风电运行规律。附图说明图I为本专利技术提供的基于概率统计的风电出力时间序列建模方法的流程图。图2为本专利技术提供的风电出力时间序列特性示意图。图3为本专利技术提供的重构风电出力时间序列方法流程图。具体实施例方式下面结合附图对本专利技术的具体实施方式作进一步的详细说明。本实施例提供的,其流程图如图I所示,所述建模方法包括如下步骤(I)收集至少两年内时间尺度为15分钟的风电出力历史数据,对风电出力时间序列进行处理 对风电出力时间序列进行处理包括去除序列中的错误数据和补充缺失数据;(2)分析风电出力时间序列的特性分析风电出力时间序列的特性包括波动特性Cf、概率分布特性Cd、相关特性(;和风过程特性Cp,如图2所示;所述波动特性Cf为短时间(为I分钟-40分钟内)最大波动概率分布;短时间最大波动指短时间最大值与最小值的差值,若最大值出现在最小值之后则差值为正,若最大值出现在最小值之前则差值为负。所述概率分布特性Cd指风电出力的概率分布,包括各出力水平的概率密度和累计概率分布。所述相关特性(;指风电出力时间序列的自相关函数和偏自相关函数。所述风过程特性Cp指滤波后风电出力时间序列中超过某一出力L的子序列的个数,出力L 一般指所研究风电场额定装机容量的30%、40%、...、80%。首先确定这些特性是否存在,若存在则得出结果,若不存在则不考虑。这些特性都需要有重复性,由于历史风电出力数据的有限,可利用平移窗函数的方法得到多个特定长度(比如I年)的风电时间序列,对这些风电时间序列进行特性分析,若上述特性可重复则认定特性存在,若不重复则认定特性不存在。(3)对风电出力时间序列分割与统计;对风电出力时间序列分割与统计是对风电出力时间序列进行滤波处本文档来自技高网...
【技术保护点】
一种风电出力时间序列建模方法,其特征在于,所述建模方法包括如下步骤:(1)收集至少两年内时间尺度为15分钟的风电出力历史数据,对风电出力时间序列进行处理;(2)分析风电出力时间序列的特性;(3)对风电出力时间序列分割与统计;(4)采用序贯抽样方法,重构模拟风电时间序列;(5)验证模拟风电出力时间序列的可靠性。
【技术特征摘要】
【专利技术属性】
技术研发人员:黄越辉,吕振华,刘纯,许晓艳,李鹏,马烁,刘德伟,郑太一,杨国新,孙勇,
申请(专利权)人:中国电力科学研究院,中电普瑞张北风电研究检测有限公司,吉林省电力有限公司,国家电网公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。