定向凝固过程连续测温装置和方法制造方法及图纸

技术编号:7934724 阅读:185 留言:0更新日期:2012-11-01 03:25
本发明专利技术属于温度计量领域,具体为一种定向凝固过程连续测温装置和方法,解决定向凝固过程中温度连续测量困难等问题。本发明专利技术采用非接触式热电偶,连续测量定向凝固过程不同位置的温度值以及准确计算固液界面的温度梯度。在模壳内预先内置相同高度的且底端密封的单孔陶瓷管,单孔陶瓷管在模壳内固定不动并平行于温度梯度方向,单孔陶瓷管将铂铑热电偶与合金熔体隔离,热电偶两极置入双孔陶瓷管内;双孔陶瓷管插入单孔陶瓷管底部,且双孔陶瓷管顶端固定于上升降系统,热电偶两极顶端外接无纸记录仪,无纸记录仪自动采集不同时刻的温度值。将无纸记录仪中温度随时刻的变化转化成温度随距离的变化,从而反映定向凝固过程不同位置的温度场分布情况。

【技术实现步骤摘要】

本专利技术属于温度计量领域,具体为一种。
技术介绍
定向凝固技术广泛应用于航空发动机和燃气轮机的涡轮叶片制造。在定向凝固理论及工艺的研究过程中,常常要确定凝固过程中温度场的分布情况,所以需要对合金定向凝固时的温度场进行测定。然而定向凝固过程是在真空密闭条件下进行的,且凝固过程中的炉温高达1700°C,因此定向凝固炉的炉温数据采集和处理困难,并且采集数据的精确度低。目前,定向凝固炉的常用炉温数据采集方法如下在陶瓷模壳的不同位置预先内置水平 摆放的(内端密封)的陶瓷管,每个陶瓷管中插入一个热电偶,将所有热电偶外接于测温仪器,该测温仪器自动采集每个热电偶不同时刻的温度值。该方法的每个热电偶只能测量相同位置处温度随时刻的变化,却不能测量温度随垂直距离的变化,因而难以确定凝固过程中温度场的分布情况。
技术实现思路
本专利技术的目的在于提供一种,解决定向凝固炉中温度连续测量困难,温度梯度难以准确计算等工程化问题。本专利技术的技术方案是一种定向凝固过程连续测温装置,该连续测温装置包括上升降系统、无纸记录仪、模壳夹杆、模壳、单孔陶瓷管、双孔陶瓷管、钼铑热电偶、感应铜圈、石墨环,具体结构如下双孔陶瓷管外侧设置单孔陶瓷管,双孔陶瓷管和单孔陶瓷管之间留有空隙,在单孔陶瓷管的外侧设置模壳,双孔陶瓷管安装于上升降系统下部,双孔陶瓷管内置钼铑热电偶,钼铑热电偶的测温端伸至单孔陶瓷管的下部,钼铑热电偶的另一端与无纸记录仪的输入端连接;固相合金放置于单孔陶瓷管与模壳之间,模壳的外侧设有模壳夹杆、石墨环,模壳通过模壳夹杆夹持,石墨环的外侧设置感应铜圈,用于实现对固相合金的感应加热,形成合金熔区;合金熔区与合金熔区以下的凝固部分之间形成固液界面。—种所述装置的定向凝固过程连续测温方法,在模壳内预先内置相同高度的且底端密封的单孔陶瓷管,单孔陶瓷管在模壳内固定不动并平行于温度梯度方向,单孔陶瓷管将钼铑热电偶与合金熔体隔离;热电偶两极置入双孔陶瓷管内,双孔陶瓷管高度在模壳高度以上;双孔陶瓷管插入单孔陶瓷管底部,且双孔陶瓷管顶端固定于上升降系统;热电偶两极顶端外接无纸记录仪;无纸记录仪自动采集不同时刻的温度值。所述的定向凝固过程连续测温方法,对定向凝固过程不同位置进行连续测温,对比不同位置的温度分布情况。所述的定向凝固过程连续测温方法,将温度随时刻的变化曲线转化成温度随距离的变化曲线,在合金的固液相线温度区间内的斜率即温度梯度。所述的定向凝固过程连续测温方法,被测量的定向凝固炉包括高速水冷定向凝固炉、液态金属冷却定向凝固炉或区域熔化液态金属冷却定向凝固炉。所述的定向凝固过程连续测温方法,具体步骤如下(I)对于高速水冷和液态金属冷却定向凝固炉,在熔模铸造的蜡模模组组装过程中,将底端密封的单孔陶瓷管固定于模壳的中心位置或周围不同位置,且单孔陶瓷管平行于温度梯度方向;对于区域熔化液态金属冷却定向凝固炉,使用底端密封的模壳,将底端密封的单孔陶瓷管固定于模壳的中心位置,且单孔陶瓷管平行于温度梯度方向;(2)单孔陶瓷管底端与模壳底端齐平,单孔陶瓷管顶端与模壳顶端齐平,并保证经脱蜡-烧结后模壳中的陶瓷管固定不动;(3)钼铑热电偶的两极插入两端开口的双孔陶瓷管,两极的焊接点暴露于双孔陶瓷管低端,两极的顶端暴露于双孔陶瓷管的顶端,双孔陶瓷管的长度在模壳高度以上; (4)在模壳空腔内放置合金碎块,然后把内置单孔陶瓷管的模壳固定于炉体中,将包含热电偶的双孔陶瓷管插入单孔陶瓷管内,双孔陶瓷管的底端与单孔陶瓷管底端接触,双孔陶瓷管的顶端固定于上升降系统,热电偶两极外接于无纸记录仪;(5)采用真空感应加热模壳对于高速水冷和液态金属冷却定向凝固炉,加热温度为1400-1700°C ;对于区域熔化液态金属冷却定向凝固炉,加热频率为1000-1500HZ ;(6)待加热温度或加热频率达到设置值时,合金熔体在模壳中静止l_20min,将双孔陶瓷管匀速上移,上移速度为O. Ι-ΙΟΟμπι/s,测量热电偶上移过程中的温度变化;(7)双孔陶瓷管上移结束后,可将双孔陶瓷管匀速下移,测量热电偶下移过程中的温度变化,或者将双孔陶瓷管下移至模壳低端,重新上移双孔陶瓷管,测量热电偶上移过程中的温度变化;(8)处理无纸记录仪自动采集的温度值转化成温度随距离的边变化,并且根据合金的固液相线温度区间准确计算固液界面的温度梯度。所述的定向凝固过程连续测温方法,内置的陶瓷管为氧化铝、氮化硅、碳化硅、六方氮化硼、WC、TiC、TaC、NbC或VC,陶瓷含量在99wt%以上。所述的定向凝固过程连续测温方法,定向凝固所使用的材料为镍基高温合金。所述的定向凝固过程连续测温方法,双孔陶瓷管的长度为模壳高度的1-5倍。所述的定向凝固过程连续测温方法,模壳的下部伸至液态金属中,液态金属作为定向凝固的冷却剂。本专利技术的有益效果是I.本专利技术在熔模铸造的陶瓷模壳中,采用预先内置底端密封的单孔陶瓷管将热电偶与合金熔体隔离,因此合金熔体与热电偶不接触,热电偶可重复使用。本专利技术采用非接触式热电偶,连续测量定向凝固过程不同位置的温度值以及准确计算固液界面的温度梯度。2.本专利技术热电偶与双孔陶瓷管固定为一体,双孔陶瓷管顶端固定于上升降系统,双孔陶瓷管的上下移动即为热电偶的上下移动,可重复多次测量不同凝固条件下的温度。3.本专利技术热电偶两极外接于无纸记录仪,在热电偶缓慢匀速上移的过程中,无纸记录仪可连续自动采集不同时刻的温度,温度值精确且连续。4.根据无纸记录仪的温度变化及合金熔体的固液相线温度区间,可精确计算固液界面的温度梯度。附图说明图I为本专利技术的区域熔化液态金属冷却炉示意图。图中,I-上升降系统;2—无纸记录仪;3—模壳夹杆;4一模壳;5—固相合金;6—单孔陶瓷管;7—双孔陶瓷管;8—钼铑热电偶;9一感应铜圈;10—石墨环;11 一合金溶区;12—隔热挡板;13 —固液界面;14一 甘祸;15—液态金属;16—下升降系统。 图2为热电偶静止时不同加热频率下温度随时刻的变化曲线。图3为不同上移速度下的温度随距离变化曲线。图4为SRR99合金的DTA升温曲线。图5为不同加热频率下的SRR99合金固液界面温度梯度。具体实施例方式下面以区域熔化液态金属冷却炉为例,所用合金为SRR99镍基高温合金,介绍连续测温的方法及其温梯度的计算。如图I所示,本专利技术区域熔化液态金属冷却炉的定向凝固过程连续测温装置主要包括上升降系统I、无纸记录仪2、模壳夹杆3、模壳4、固相合金5、单孔陶瓷管6、双孔陶瓷管7、钼铑热电偶8、感应铜圈9、石墨环10、合金熔区11、隔热挡板12、固液界面13、坩埚14、液态金属15、下升降系统16等,具体结构如下双孔陶瓷管7安装于上升降系统I下部,双孔陶瓷管7内设置钼铑热电偶8,钼铑热电偶8的测温端伸至单孔陶瓷管6的下部,钼铑热电偶8的另一端与无纸记录仪2的输入端连接;双孔陶瓷管7外侧设置单孔陶瓷管6,双孔陶瓷管7和单孔陶瓷管6之间留有空隙,在单孔陶瓷管6的外侧设置模壳4,固相合金5放置于单孔陶瓷管6与模壳4之间,模壳4的外侧设有模壳夹杆3、石墨环10,模壳4通过模壳夹杆3夹持,石墨环10的外侧设置感应铜圈9,用于实现对固相合金5的感应加热,形成合金熔区11 ;在感应铜圈9、石墨环10的下部设置坩埚14,石墨环10与坩埚14之间通过本文档来自技高网...

【技术保护点】
一种定向凝固过程连续测温装置,其特征在于,该连续测温装置包括:上升降系统、无纸记录仪、模壳夹杆、模壳、单孔陶瓷管、双孔陶瓷管、铂铑热电偶、感应铜圈、石墨环,具体结构如下:双孔陶瓷管外侧设置单孔陶瓷管,双孔陶瓷管和单孔陶瓷管之间留有空隙,在单孔陶瓷管的外侧设置模壳,双孔陶瓷管安装于上升降系统下部,双孔陶瓷管内置铂铑热电偶,铂铑热电偶的测温端伸至单孔陶瓷管的下部,铂铑热电偶的另一端与无纸记录仪的输入端连接;固相合金放置于单孔陶瓷管与模壳之间,模壳的外侧设有:模壳夹杆、石墨环,模壳通过模壳夹杆夹持,石墨环的外侧设置感应铜圈,用于实现对固相合金的感应加热,形成合金熔区;合金熔区与合金熔区以下的凝固部分之间形成固液界面。

【技术特征摘要】

【专利技术属性】
技术研发人员:张小丽周亦胄金涛孙晓峰
申请(专利权)人:中国科学院金属研究所
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1