一种前馈式微波天线制造技术

技术编号:7373203 阅读:154 留言:0更新日期:2012-05-28 03:09
本实用新型专利技术公开一种前馈式微波天线,其包括辐射源、用于将所述辐射源发射的电磁波发散的第一超材料面板、第二超材料面板以及贴附于所述第二超材料面板背部的反射面板,电磁波经过所述第一超材料面板被发散后进入所述第二超材料面板产生折射并被所述反射面板反射后再次进入所述第二超材料面板再次发生折射并最终平行出射。本实用新型专利技术采用超材料原理制作天线,使得天线脱离了常规的凸透镜形状、凹透镜形状以及抛物面形状的限制,采用本实用新型专利技术的天线,其形状可为平板状或任意形状且厚度更薄、体积更小、加工和制作更为方便,具有成本低廉、增益效果好的有益效果。(*该技术在2021年保护过期,可自由使用*)

【技术实现步骤摘要】

本技术涉及天线领域,更具体地说,涉及一种前馈式微波天线
技术介绍
现有的前馈式微波天线,通常由金属抛物面及位于金属抛物面焦点的辐射源构成,金属抛物面的作用为将外部的电磁波反射给辐射源或将辐射源发射的电磁波反射出去。金属抛物面的面积以及金属抛物面的加工精度直接决定微波天线的各项参数,例如增益、方向性等。但现有的前馈式微波天线存在以下缺点一是从金属抛物面反射的电磁波部分会被辐射源阻挡造成一定的能量损失,二是金属抛物面制作困难,成本较高。金属抛物面通常利用模具铸造成型或者采用数控机床进行加工的方法。第一种方法的工艺流程包括制作抛物面模具、铸造成型抛物面和进行抛物反射面的安装。工艺比较复杂,成本高,而且抛物面的形状要比较准确才能实现天线的定向传播,所以对加工精度的要求也比较高。第二种方法采用大型数控机床进行抛物面的加工,通过编辑程序,控制数控机床中刀具所走路径, 从而切割出所需的抛物面形状。这种方法切割很精确,但是制造这种大型数控机床比较困难,而且成本比较高。
技术实现思路
本技术要解决的技术问题在于,针对现有技术的上述不足,提供一种体积较小、成本低廉、增益较高且传输距离远的前馈式微波天线。本技术解决其技术问题所采用的技术方案是提出一种前馈式微波天线,包括辐射源、用于将所述辐射源发射的电磁波发散的第一超材料面板、第二超材料面板以及贴附于所述第二超材料面板背部的反射面板,电磁波经过所述第一超材料面板被发散后进入所述第二超材料面板产生折射并被所述反射面板反射后再次进入所述第二超材料面板再次发生折射并最终平行出射;所述第一超材料面板包括第一基材及周期排布于所述第一基材上的多个第三人造金属微结构;所述第二超材料面板包括核心层,所述核心层包括多个具有相同折射率分布的核心超材料片层,每一核心超材料片层的折射率均呈圆形分布, 圆心处折射率最大,随着半径的增大,折射率从np连续减小到Iitl且相同半径处折射率相同; 所述核心超材料片层包括核心超材料片层基材及周期排布于所述核心超材料片层基材表面的多个第一人造金属微结构。进一步地,所述第二超材料面板还包括设置于所述核心层前侧的第一渐变超材料片层至第N渐变超材料片层,其中第N渐变超材料片层靠近所述核心层;每一渐变超材料片层折射率均呈圆形分布,圆心处折射率最大,随着半径的增大从其最大折射率连续减小到 n0且相同半径处折射率相同,两个相邻的渐变超材料片层的最大折射率表示为Iii和ni+1,其中nQ < Iii < ni+1 < np, i为正整数,η,对应于距离所述核心层较远的渐变超材料片层的最大折射率值;所述每一渐变超材料片层包括渐变超材料片层基材以及周期排布于所述渐变超材料片层基材表面的多个第二人造金属微结构。进一步地,所述第二超材料面板还包括设置于所述第一渐变超材料片层前侧的第一匹配层至第M匹配层,其中第M匹配层靠近所述第一渐变超材料片层;每一匹配层折射率分布均勻,靠近自由空间的所述第一匹配层折射率大致等于自由空间折射率,靠近所述第一渐变超材料片层的第M匹配层折射率大致等于所述第一渐变超材料片层最小折射率IV进一步地,,每一渐变超材料片层和所有核心超材料片层随着半径r的变化,折射率分布关系式为γ ι , 、^ ^ss2 +r2 -SS ,、n(r)= ax — 2 * __ ^ * (^max — n0)^jss + / -仰其中,nfflax表示各超材料片层所具有的最大折射率值,n0表示各超材料片层所具有的相同的最小折射率值,ss表示辐射源距第一渐变超材料片层的垂直距离,1表示各超材料片层所具有的相同的最大半径值。进一步地,每层核心超材料片层还包括覆盖于所述第一人造金属微结构上的覆盖层;周期排布于所述基材上的多个所述第一人造金属微结构的尺寸变化规律为多个所述第一人造金属微结构的几何形状相同,所述第一人造金属微结构在所述核心超材料片层基材上呈圆形分布,圆心处的第一人造金属微结构尺寸最大,随着半径的增大,对应半径的第一人造金属微结构尺寸减小且相同半径处的第一人造金属微结构尺寸相同。进一步地,每层渐变超材料片层还包括覆盖于所述第二人造金属微结构上的覆盖层;周期排布于所述基材上的所述第二人造金属微结构的尺寸变化规律为多个所述第二人造金属微结构的几何形状相同,所述第二人造金属微结构在所述渐变超材料片层基材上呈圆形分布,圆心处的第二人造金属微结构尺寸最大,随着半径的增大,对应半径的第二人造金属微结构尺寸减小且相同半径处的第二人造金属微结构尺寸相同。进一步地,所述第一超材料面板折射率呈圆形分布,圆心处的折射率最小且随着半径的增大,对应半径的折射率增大且相同半径处折射率相同。进一步地,所述第一超材料面板由多个折射率分布相同的第一超材料片层构成, 所述第一超材料片层还包括覆盖于所述第三人造微结构上的覆盖层;多个第三人造微结构为第三人造金属微结构且几何形状相同,所述第三人造金属微结构在所述第一基材上呈圆形分布,且圆心处的第三人造金属微结构尺寸最小,随着半径的增大,对应半径的第三人造金属微结构尺寸增大且相同半径处的第三人造金属微结构尺寸相同。进一步地,所述多个第一人造金属微结构、所述多个第二人造金属微结构和所述多个第三人造金属结构具有相同的几何形状。进一步地,所述几何形状为“工”字形,包括竖直的第一金属分支以及位于所述第一金属分支两端且垂直于所述第一金属分支的第二金属分支。进一步地,所述几何形状还包括位于所述第二金属分支两端且垂直于所述第二金属分支的第三金属分支。进一步地,所述几何形状为平面雪花型,包括相互垂直的两条第一金属分支以及位于所述第一金属分支两端且垂直于所述第一金属分支的第二金属分支。实施本技术的技术方案,具有以下有益效果通过设计超材料面板核心层和渐变层上及各自之间的折射率变化将辐射源发射的电磁波经过两次折射后转换为平面波,从而提高了天线的汇聚性能,大大减少了反射损耗,也就避免了电磁能量的减少,增强了传输距离,提高了天线性能。进一步地,本技术还在辐射源前端设置具有发散功能的超材料,从而提高辐射源的近距离辐射范围,使得前馈式微波天线整体能够更小的尺寸并使得被核心层反射回来的电磁波绕过辐射源而不会产生辐射源阴影、造成能量损失。附图说明下面将结合附图及实施例对本技术作进一步说明,附图中图1是构成超材料的基本单元的立体结构示意图;图2是本技术前馈式微波天线的结构示意图;图3是本技术前馈式微波天线中构成第一超材料面板的第一超材料片层的结构示意图;图4是本技术前馈式微波天线中第二超材料面板的立体结构示意图;图5是能对电磁波产生响应以改变超材料基本单元折射率的第一较佳实施方式的人造金属微结构的几何形状拓扑图案;图fe为图5中人造金属微结构几何形状拓扑图案的衍生图案;图6是能对电磁波产生响应以改变超材料基本单元折射率的第二较佳实施方式的人造金属微结构的几何形状拓扑图案;图6a为图6中人造金属微结构几何形状拓扑图案的衍生图案。具体实施方式光,作为电磁波的一种,其在穿过玻璃的时候,因为光线的波长远大于原子的尺寸,因此我们可以用玻璃的整体参数,例如折射率,而不是组成玻璃的原子的细节参数来描述玻璃对光线的响应。相应的,在研究材料对其他电磁本文档来自技高网...

【技术保护点】

【技术特征摘要】

【专利技术属性】
技术研发人员:刘若鹏季春霖岳玉涛李勇祥
申请(专利权)人:深圳光启高等理工研究院深圳光启创新技术有限公司
类型:实用新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术