【技术实现步骤摘要】
本专利技术涉及图像分类,尤其涉及于一种基于ecnet网络的舌像识别方法及系统。
技术介绍
1、舌像诊断作为中医“望闻问切”四诊法中望诊的关键一环,通过分析舌头的颜色、质地、形状和湿度等特征,能够反映出个体的健康状况,对疾病的诊断和后续治疗计划提供重要依据。然而,在现代社会,传统的舌诊方法面临着多方面的挑战:
2、1.专业性要求高:传统舌诊依赖于经验丰富的中医师通过目视和经验来判断,这一过程高度主观,需要医生具有较高的专业水平。而且,由于光照条件、观察角度等因素的变化,即使是经验丰富的医生,也可能在不同条件下做出不同的判断。
3、2.效率低下:传统舌诊通常需要较长时间的观察和记录,医生通过反复观察患者的舌像变化来判断体质和病情,这个过程效率较低,不仅耗时长,而且对于需要持续监测病情的情况不够便捷。
4、这些问题限制了舌诊在快节奏的现代生活中的应用,也制约了其在大范围内的普及和发展。
技术实现思路
1、本专利技术的目的在于提供一种基于ecnet网络的舌像识别
...【技术保护点】
1.一种基于ECNet网络的舌像识别方法,其特征在于,该方法包括以下步骤:
2.根据权利要求1所述的舌像识别方法,其特征在于,步骤S1中,将数据集以8:2的比例划分为训练数据集和验证数据集。
3.根据权利要求2所述的舌像识别方法,其特征在于,步骤S2中,采用Python语言中Pytorch框架下的torch.nn功能进行ECNet模型构建,利用预处理后的舌像数据集进行ECNet模型训练,并在每轮训练完成后利用验证集对模型性能进行评估。
4.根据权利要求1所述的舌像识别方法,其特征在于,ECNet模型中,前置处理层通过单层卷积实现,将
...【技术特征摘要】
1.一种基于ecnet网络的舌像识别方法,其特征在于,该方法包括以下步骤:
2.根据权利要求1所述的舌像识别方法,其特征在于,步骤s1中,将数据集以8:2的比例划分为训练数据集和验证数据集。
3.根据权利要求2所述的舌像识别方法,其特征在于,步骤s2中,采用python语言中pytorch框架下的torch.nn功能进行ecnet模型构建,利用预处理后的舌像数据集进行ecnet模型训练,并在每轮训练完成后利用验证集对模型性能进行评估。
4.根据权利要求1所述的舌像识别方法,其特征在于,ecnet模型中,前置处理层通过单层卷积实现,将输入图像尺寸缩减为原来的一半,并增加图像的通道数;mbcconv单元负责特征抽取,通过单元内的通道注意力和空间注意力机制提升对特征的识别能力,具体包括:
5.根据权利要求1所述的舌像识别方法,其特征在于,步骤s3中,获取用户的舌像图片后,首先调整图片的尺寸到224x224像素,然后使用已训练好的ecnet模型对其进行分类预测,计算出各个类别的概率;之后,选取具有...
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。