System.ArgumentOutOfRangeException: 索引和长度必须引用该字符串内的位置。 参数名: length 在 System.String.Substring(Int32 startIndex, Int32 length) 在 zhuanliShow.Bind() 一种充电控制方法及水下无线电能传输系统技术方案_技高网

一种充电控制方法及水下无线电能传输系统技术方案

技术编号:41265341 阅读:5 留言:0更新日期:2024-05-11 09:21
本发明专利技术公开一种充电控制方法及水下无线电能传输系统,涉及水下无线电能传输领域,所述充电控制方法根据未接通水下航行器电池负载情况下的第一状态参数及接通水下航行器电池负载情况下的第二状态参数对水下无线电能传输系统的等效模型进行参数辨识,获得辨识结果,并基于辨识结果确定最优工作频率,本发明专利技术在参数辨识过程中充分考虑了涡流损耗的影响,实现了包含发射端涡流损耗电阻、接收端涡流损耗电阻、发射端涡流损耗电阻系数和接收端涡流损耗电阻系数的系统参数辨识,提高了无线电能传输系统最优工作频率确定的精度,实现了水下装备高效率的能源补给。

【技术实现步骤摘要】

本专利技术涉及水下无线电能传输领域,特别是涉及一种充电控制方法及水下无线电能传输系统


技术介绍

1、现代海洋作业中,各类水下航行器以及相关的网络化传感、控制设备是水下无人系统的重要组成。然而,这些装备的续航或工作时间有限,严重制约着水下无人系统的整体运行效率。目前水下装备能源供给一般采用电池换电或接触式湿插拔,智能化程度与作业效率较低。无线电能传输技术成为解决水下无人系统装备电能补给需求的一个有效途径。

2、目前水下无线充电技术处于快速发展时期,由于海水涡流损耗的存在,无线充电系统水下工作时系统的最优工作频率会偏离设计值,引起效率降低。已有文献开展了涡流损耗值的计算,但是由于实际工况下海水特性、工作距离、偏移距离、磁屏蔽结构等的不同,涡流损耗、系统互感等参数会随时变化,无法精确地计算得到,也就无法进一步地开展系统最优频率控制。也有相关专利披露水下无线充电技术,如专利《一种水下航行器无线充电系统及其控制方法》,利用超声波实现无线充电线圈的对接,并可以根据效率变化调整工作频率,该方法是通过实际测量找到最优工作频率,并未考虑涡流损耗的影响。


技术实现思路

1、本专利技术的目的是提供一种充电控制方法及水下无线电能传输系统,可实现充电状态下的参数辨识,并确定最工工作频率,提高充电效率。

2、为实现上述目的,本专利技术提供了如下方案:

3、一种用于水下无线电能传输的充电控制方法,所述充电控制方法包括如下步骤:

4、获取水下无线电能传输系统在未接通水下航行器电池负载情况下的第一状态参数;所述第一状态参数包括:发射端并联补偿电容上电压、发射线圈上的电流和接收端开路电压;

5、获取水下无线电能传输系统在接通水下航行器电池负载情况下且在初始工作频率工作时的第二状态参数;所述第二状态参数包括:发射端并联补偿电容上电压、发射线圈上的电流、电池负载和buck电路的占空比;

6、基于所述第一状态参数和所述第二状态参数对水下无线电能传输系统的等效模型进行在线参数辨识,获得辨识结果;所述辨识结果包括:等效模型的互感、发射端涡流损耗电阻、接收端涡流损耗电阻、发射端涡流损耗电阻系数和接收端涡流损耗电阻系数;

7、根据所述辨识结果确定使水下无线电能传输系统的工作效率最大化的工作频率,作为最优工作频率;

8、控制所述水下无线电能传输系统在所述最优工作频率下工作。

9、可选的,基于所述第一状态参数和所述第二状态参数对水下无线电能传输系统的等效模型进行在线参数辨识,获得辨识结果,具体包括:

10、根据第一状态参数,采用如下公式辨识等效模型的互感和发射端涡流损耗电阻;

11、

12、

13、其中,为第一状态参数中的接收端开路电压,ω0为初始工作频率对应的角频率,j为虚数单位,msea为等效模型的互感,为第一状态参数中的发射线圈上的电流,为第一状态参数中的发射端并联补偿电容上电压,lp为发射线圈电感,rp为发射线圈内阻,cp为发射端串联补偿电容,rp_eddy为发射端涡流损耗电阻;

14、根据第二状态参数,采用如下公式辨识等效模型的接收端涡流损耗电阻;

15、

16、zs=rs+rs_eddy+req;

17、

18、其中,rl和d分别为第二状态参数中的发射端并联补偿电容上电压、发射线圈上的电流、电池负载和buck电路的占空比,zs为接收端的等效阻抗,rs为接收线圈内阻,rs_eddy为接收端涡流损耗电阻,req为接入水下无线电能传输系统的等效负载;

19、根据发射端涡流损耗电阻和接收端涡流损耗电阻,利用如下公式辨识发射端涡流损耗电阻系数和接收端涡流损耗电阻系数;

20、

21、

22、其中,rp_eddy和rs_eddy分别为发射端涡流损耗电阻系数和接收端涡流损耗电阻系数。

23、可选的,根据所述辨识结果确定使水下无线电能传输系统的工作效率最大化的工作频率,作为最优工作频率,具体包括:

24、根据所述辨识结果,采用如下公式确定使水下无线电能传输系统的工作效率最大化的工作频率,作为最优工作频率;

25、

26、其中,ηsea为工作频率ω对应的水下无线电能传输系统的工作效率。

27、可选的,控制所述水下无线电能传输系统在所述最优工作频率下工作,具体包括:

28、利用如下公式求解最优工作频率对应的发射端串联补偿电容的电容值发射端并联补偿电容的电容值和接收端补偿电容的电容值;

29、

30、

31、

32、其中,c'p、c'f和c's分别为最优工作频率ωopt对应的发射端串联补偿电容、发射端并联补偿电容的电容值和接收端补偿电容的电容值,l11为发射端补偿电感,lp为发射线圈电感,ls为接收端线圈电感;

33、调节水下无线电能传输系统的发射端串联补偿电容、发射端并联补偿电容和接收端补偿电容,使发射端串联补偿电容的电容值与最优工作频率ωopt对应的发射端串联补偿电容的电容值一致,使发射端并联补偿电容的电容值与最优工作频率ωopt对应的发射端并联补偿电容的电容值一致,使接收端补偿电容的电容值与最优工作频率ωopt对应的接收端补偿电容的电容值一致。

34、一种水下无线电能传输系统,所述系统包括:发射端功率变换模块、发射端控制器、发射端光通信模块、磁耦合机构、接收端光通信模块、接收端功率变换模块和接收端控制器;

35、所述发射端功率变换模块的输出端与所述磁耦合机构的发射线圈连接,所述磁耦合机构的接收线圈与所述接收端功率变换模块的输入端连接,所述发射端功率变换模块的输入端用于连接直流电源,所述接收端功率变换模块的输出端用于连接电池负载;

36、所述发射端控制器与所述发射端光通信模块连接,所述接收端控制器与所述接收端光通信模块连接,所述发射端光通信模块与所述接收端光通信模块通信连接;

37、所述发射端控制器与所述发射端功率变换模块的控制端连接,所述接收端控制器与所述接收端功率变换模块的控制端连接;

38、所述发射端控制器用于对所述发射端功率变换模块进行监测和控制,并与所述接收端控制器进行监测参数和控制指令的交互;

39、所述接收端控制器用于对所述接收端功率变换模块进行监测和控制,并与所述发射端控制器进行监测参数和控制指令的交互;

40、所述发射端控制器还用于基于监测及与接收端控制器交互获得的第一状态参数和第二状态参数,采用上述的充电控制方法确定最优工作频率,根据最优工作频率对发射端功率变换模块进行控制,使磁耦合机构的发射线圈以所述最优工作频率工作,并将最优工作频率发送给接收端控制器,所述接收端控制器还用于根据所述最优工作频率对接收端功率变换模块进行控制,使磁耦合机构的接收线圈以所述最优工作频率工作。

4本文档来自技高网...

【技术保护点】

1.一种用于水下无线电能传输的充电控制方法,其特征在于,所述充电控制方法包括如下步骤:

2.根据权利要求1所述的用于水下无线电能传输的充电控制方法,其特征在于,基于所述第一状态参数和所述第二状态参数对水下无线电能传输系统的等效模型进行在线参数辨识,获得辨识结果,具体包括:

3.根据权利要求2所述的用于水下无线电能传输的充电控制方法,其特征在于,根据所述辨识结果确定使水下无线电能传输系统的工作效率最大化的工作频率,作为最优工作频率,具体包括:

4.根据权利要求1所述的用于水下无线电能传输的充电控制方法,其特征在于,控制所述水下无线电能传输系统在所述最优工作频率下工作,具体包括:

5.一种水下无线电能传输系统,其特征在于,所述系统包括:发射端功率变换模块、发射端控制器、发射端光通信模块、磁耦合机构、接收端光通信模块、接收端功率变换模块和接收端控制器;

6.根据权利要求5所述的水下无线电能传输系统,其特征在于,所述发射端功率变换模块包括:逆变电路和发射端谐振补偿网络;

7.根据权利要求6所述的水下无线电能传输系统,其特征在于,所述接收端功率变换模块包括:接收端谐振补偿网络、整流电路和DC-DC充电控制电路;

8.根据权利要求7所述的水下无线电能传输系统,其特征在于,所述发射端谐振补偿网络和所述接收端谐振补偿网络均采用LCC/S阻抗匹配网络。

9.根据权利要求8所述的水下无线电能传输系统,其特征在于,所述发射端谐振补偿网络内的发射端串联补偿电容、发射端并联补偿电容及所述接收端谐振补偿网络内的接收端补偿电容均为可变电容。

...

【技术特征摘要】

1.一种用于水下无线电能传输的充电控制方法,其特征在于,所述充电控制方法包括如下步骤:

2.根据权利要求1所述的用于水下无线电能传输的充电控制方法,其特征在于,基于所述第一状态参数和所述第二状态参数对水下无线电能传输系统的等效模型进行在线参数辨识,获得辨识结果,具体包括:

3.根据权利要求2所述的用于水下无线电能传输的充电控制方法,其特征在于,根据所述辨识结果确定使水下无线电能传输系统的工作效率最大化的工作频率,作为最优工作频率,具体包括:

4.根据权利要求1所述的用于水下无线电能传输的充电控制方法,其特征在于,控制所述水下无线电能传输系统在所述最优工作频率下工作,具体包括:

5.一种水下无线电能传输系统,其特征在于,所述系统包括:发射端功率变换模块、发射端...

【专利技术属性】
技术研发人员:李芳王丽芳陶成轩李树凡张荣达朝来聂铭
申请(专利权)人:中国科学院电工研究所
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1