岸桥作业效率预测方法及系统技术方案

技术编号:40833651 阅读:13 留言:0更新日期:2024-04-01 14:57
本发明专利技术涉及神经网络领域,提供一种岸桥作业效率预测方法及系统,其中预测方法包括:采集影响岸桥作业效率的目标数据,目标数据包括工装数据、自然数据和人为数据;通过互信息法对目标数据进行特征分析,得到预测数据集;将预测数据集输入预先训练得到的预测模型中,进行岸桥作业效率预测。用以解决现有技术中进行安桥作业效率预测时存在特征分析不完整,特征对标签解释力不足的问题,且模型复杂难以应用至实际项目的缺陷,本申请的方案可以以较高的平均检测精度和较好的检测速度,很好的满足高速轻量的同时具有较高准确率的岸桥作业效率预测方法的请求。

【技术实现步骤摘要】

本专利技术涉及神经网络,尤其涉及一种岸桥作业效率预测方法及系统


技术介绍

1、港口在现代物流网络中扮演着非常重要的角色。港口作为海陆运输的关键枢纽,承担着连接全球贸易的重要任务,是当今世界物流网络核心节点之一。随着集装箱的运输量不断的增加,港口的作业压力也日趋增长。为了减缓港口作业压力,提高集装箱港口作业效率,目前主要采用两种方法:一是增设基础设施来提高竞争力,但需要大资金和时间;二是优化调度算法来提高现有资源利用率,成本低、回报高,已广泛采用。岸桥作业效率是调度优化算法中必须考虑的重要因素之一,是系统内固有的不确定性因素,它可能会干扰原有的调度方案,影响方案的最优性,甚至导致方案不可行。因此,在进行泊位计划优化和装卸作业调度优化中,准确的岸桥作业效率可以作为一个重要参考指标,有助于制定更合理、更优化的调度决策,提高整体运作效率。

2、非线性回归问题多通过机器学习解决。早期的非线性回归方法主要使用多项式回归来拟合非线性关系;1990年代,决策树和集成方法作为解决非线性回归问题的有效工具,由多位研究者相继提出和发展,包括了leo breiman本文档来自技高网...

【技术保护点】

1.岸桥作业效率预测方法,其特征在于,包括:

2.根据权利要求1所述的岸桥作业效率预测方法,其特征在于,所述采集影响岸桥作业效率的目标数据之后,还包括:

3.根据权利要求1所述的岸桥作业效率预测方法,其特征在于,所述通过互信息法对所述目标数据进行特征分析,得到预测数据集,包括:

4.根据权利要求1所述的岸桥作业效率预测方法,其特征在于,所述预测模型通过如下方式训练得到:

5.根据权利要求4所述的岸桥作业效率预测方法,其特征在于,所述将岸桥作业的历史数据进行数据预处理,包括:

6.根据权利要求4所述的岸桥作业效率预测方法,其特征在...

【技术特征摘要】

1.岸桥作业效率预测方法,其特征在于,包括:

2.根据权利要求1所述的岸桥作业效率预测方法,其特征在于,所述采集影响岸桥作业效率的目标数据之后,还包括:

3.根据权利要求1所述的岸桥作业效率预测方法,其特征在于,所述通过互信息法对所述目标数据进行特征分析,得到预测数据集,包括:

4.根据权利要求1所述的岸桥作业效率预测方法,其特征在于,所述预测模型通过如下方式训练得到:

5.根据权利要求4所述的岸桥作业效率预测方法,其特征在于,所述将岸桥作业的历史数据进行数据预处理,包括:

6.根据权利要求4所述的岸桥作业效率预测方法,其特征在于,所述采...

【专利技术属性】
技术研发人员:曹宇程旭何玲婕周炎
申请(专利权)人:辽宁省宇识科技有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1