一种特征向量提取模型训练方法、图像检索方法及装置制造方法及图纸

技术编号:40675246 阅读:14 留言:0更新日期:2024-03-18 19:13
本申请的实施例揭示了一种特征向量提取模型训练方法、图像检索方法及装置,所述方法包括:根据初始化的特征向量提取模型对图像训练集中的每个样本图像进行特征向量提取,并根据预设数量对所有特征向量进行相似聚类,得到预设数量的特征集合;根据每个特征集合中的实例特征与相对应的当前难例特征,确定特征向量提取模型的当前损失值;若所述当前损失值小于或等于第一预设阈值时,获取训练好的目标特征向量提取模型;本申请通过在模型训练的过程中动态更新各个分类集合中的难例特征,并通过对比学习可以细粒度区分出各类的特征,以达到细粒度相似检索的性能要求,既适用于大类的宽泛场景检索,也适用于细粒度的具体地点场所相似检索。

【技术实现步骤摘要】

本申请涉及图像检索;具体而言,涉及一种特征向量提取模型训练方法、图像检索方法及装置


技术介绍

1、图像检索分成特征提取阶段和特征匹配阶段,特征提取阶段根据特征提取模型将图像的特征提取出来,包括图像的颜色特征,纹理特征,或是图像中的特征点(如特别亮的点)等;特征匹配阶段以比较两幅图像的特征来判断两幅图像是否匹配。

2、目前特征提取阶段通常采用深度学习模型进行图像通用特征提取,导致提取出来的特征类别比较宽泛,无法满足精细化图像检索的需求。


技术实现思路

1、为解决上述技术问题,本申请的实施例提供了一种特征向量提取模型训练方法、图像检索方法及装置,可以满足精细化图像检索的需求。

2、根据本申请实施例的一个方面,提供了一种特征向量提取模型训练方法,所述方法包括:根据无分类标签的图像训练集对待训练的特征向量提取模型进行初始化,得到初始化后的特征向量提取模型、预设数量的分类集合以及每个分类集合对应的初始难例特征;根据所述特征向量提取模型对所述图像训练集中的每个样本图像进行特征向量提取,并根据所述本文档来自技高网...

【技术保护点】

1.一种特征向量提取模型训练方法,其特征在于,所述方法包括:

2.根据权利要求1所述的方法,其特征在于,所述方法还包括:

3.根据权利要求1所述的方法,其特征在于,根据每个特征集合中的每个特征向量对相对应的初始难例特征进行动态更新,得到每个分类集合的当前难例特征,包括:

4.根据权利要求1所述的方法,其特征在于,根据每个特征集合中的实例特征与相对应的当前难例特征,确定所述特征向量提取模型的当前损失值,包括:

5.根据权利要求4所述的方法,其特征在于,根据每个特征集合中的实例特征与相对应的当前难例特征,计算出每个特征集合对应的损失值的计算公式...

【技术特征摘要】

1.一种特征向量提取模型训练方法,其特征在于,所述方法包括:

2.根据权利要求1所述的方法,其特征在于,所述方法还包括:

3.根据权利要求1所述的方法,其特征在于,根据每个特征集合中的每个特征向量对相对应的初始难例特征进行动态更新,得到每个分类集合的当前难例特征,包括:

4.根据权利要求1所述的方法,其特征在于,根据每个特征集合中的实例特征与相对应的当前难例特征,确定所述特征向量提取模型的当前损失值,包括:

5.根据权利要求4所述的方法,其特征在于,根据每个特征集合中的实例特征与相对应的当前难例特征,计算出每个特征集合对应...

【专利技术属性】
技术研发人员:张元梵郑少杰
申请(专利权)人:深圳前海微众银行股份有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1