风力发电机叶片故障检测方法、装置、设备及存储介质制造方法及图纸

技术编号:40525751 阅读:33 留言:0更新日期:2024-03-01 13:45
本发明专利技术公开了一种风力发电机叶片故障检测方法、装置、设备及存储介质,涉及计算机技术领域,包括:对获取到的包含风力发电机叶片振动的原始振动数据进行整周期化处理;确定整周期振动数据的正负极值,基于正负极值对整周期振动数据进行幅度量化处理得到极值数据;在预先定义的频率搜索范围内确定各预设搜索频率,在各预设搜索频率下,对极值数据进行重构处理;将与各预设搜索频率对应的重构后振动数据与相应的搜索方波数据进行滑动相对积运算,以搜索到叶片实际谐振频率值;将实际谐振频率数据与固有谐振频率值进行对比以确定风力发电机的叶片是否存在故障。本发明专利技术通过数据重构能够精确搜索和识别到风力发电机叶片的实际谐振频率值。

【技术实现步骤摘要】

本专利技术涉及计算机,特别涉及一种风力发电机叶片故障检测方法、装置、设备及存储介质


技术介绍

1、对于风力发电装置,叶片是影响风力发电装置效率的重要部件,并且叶片损伤是造成风力发电机组发生意外的主要因素之一。作为目前大型机械装备中应用最广泛、最成熟的技术之一的振动检测技术,因其具有操作简便、试验结果准确等优点受到各行业的欢迎,振动检测法进行结构检测时的思想是:机械设备设计确定后,其自身结构参数也确定了,如固有谐振频率值,一旦机械设备结构发生损伤,发生损伤的结构其自身结构参数也会随之发生这样或那样的变化,发生变化的物理参数会引起结构动力学参数发生变化,利用变化的动力学结构参数就可以判断结构当前的状态,比如,当风力发电机叶片在设计确定时,叶片的固有谐振频率也确定了,当叶片发生损伤时,叶片的实际谐振频率值也会发生变化,根据叶片的实际谐振频率值相对于其设计时的固有谐振频率值变化的偏差大小,可以判断叶片的状态。但是目前常规的振动检测方法主要基于采集到的振动数据直接进行fft(fast fourier transform,快速傅里叶变换)频谱分析来查找风力发电机运转本文档来自技高网...

【技术保护点】

1.一种风力发电机叶片故障检测方法,其特征在于,包括:

2.根据权利要求1所述的风力发电机叶片故障检测方法,其特征在于,所述获取包含风力发电机叶片振动的原始振动数据,具体为:

3.根据权利要求2所述的风力发电机叶片故障检测方法,其特征在于,所述原始振动数据为轴向振动数据。

4.根据权利要求1所述的风力发电机叶片故障检测方法,其特征在于,所述对所述原始振动数据进行整周期化处理得到整周期振动数据,包括:

5.根据权利要求4所述的风力发电机叶片故障检测方法,其特征在于,所述预设圈数至少为2圈。

6.根据权利要求1所述的风力发电机叶片故...

【技术特征摘要】

1.一种风力发电机叶片故障检测方法,其特征在于,包括:

2.根据权利要求1所述的风力发电机叶片故障检测方法,其特征在于,所述获取包含风力发电机叶片振动的原始振动数据,具体为:

3.根据权利要求2所述的风力发电机叶片故障检测方法,其特征在于,所述原始振动数据为轴向振动数据。

4.根据权利要求1所述的风力发电机叶片故障检测方法,其特征在于,所述对所述原始振动数据进行整周期化处理得到整周期振动数据,包括:

5.根据权利要求4所述的风力发电机叶片故障检测方法,其特征在于,所述预设圈数至少为2圈。

6.根据权利要求1所述的风力发电机叶片故障检测方法,其特征在于,所述基于所述正负极值对所述整周期振动数据进行幅度量化处理得到相应的极值数据,包括:

7.根据权利要求1所述的风力发电机叶片故障检测方法,其特征在于,所述在预先定义的频率搜索范围内确定各预设搜索频率,具体为:

8.根据权利要求1所述的风力发电机叶片故障检测方法,其特征在于,所述在各所述预设搜索频率下,对所述极值数据进行重构处...

【专利技术属性】
技术研发人员:杨荣华唐德尧李修文龚妙
申请(专利权)人:唐智科技湖南发展有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1