一种基于U-Net增强的多尺度模块和SE注意力机制的皮肤黑色素病变图像分割方法技术

技术编号:40433863 阅读:24 留言:0更新日期:2024-02-22 22:59
本发明专利技术采用一种基于UNet网络的改进算法,提出了更深的网络结构改进UNET模型,通过引入视觉注意力网络的深度卷积和深度可分离卷积来实现图像特征的提取,同时将Chan‑Vese(CV)算法的能量概念整合到U‑Net模型的损失函数中。所提算法对皮肤病变的分割效果较好,在多种医学图像数据集上进行了实验,平均交叉合并率(即moiu)达到84.66%,其miou与Unet、Unet++、Attention‑UNet、ResUNet++、DoubleUNet、TransUnet、LeViT‑UNet、D相比分别提高了4.14%、3.44%、3.17%、3.66%和3.3%。分别以7.66%、2.94%、1.56%的MOIU实现了当前数据集的最佳表现。

【技术实现步骤摘要】

本专利技术涉及图像处理,具体涉及一种基于u-net增强的多尺度模块和se注意力机制的皮肤黑色素病变图像分割方法。


技术介绍

1、随着医学影像技术的快速发展,皮肤病变的自动识别和分割在皮肤科诊断和治疗中变得越来越重要。特别是对于皮肤黑色素病变,如黑色素瘤,其早期识别对于患者的治疗和预后至关重要。然而,由于皮肤病变的高度异质性,包括病变的大小、形状、颜色以及与周围皮肤的对比度,使得自动分割成为一个具有挑战性的任务。

2、传统的图像处理方法,如基于阈值的分割、边缘检测或区域生长算法,在处理复杂的皮肤病变图像时常常效果不佳。这些方法通常依赖于手动设置的参数或规则,难以适应皮肤病变图像的多样性和复杂性。此外,这些方法往往无法有效处理图像中的噪声和伪影,导致分割精度不高。

3、近年来,深度学习,特别是卷积神经网络(cnn)在医学图像分割领域显示出了巨大的潜力。u-net架构因其在医学图像分割任务中的出色表现而广受欢迎。它通过使用跳跃连接和上采样策略有效地捕获图像的上下文信息,从而实现精确的分割。然而,尽管u-net在许多情况下表现良好,但在处理本文档来自技高网...

【技术保护点】

1.本专利技术提出了一种先进的皮肤病变图像分割方法,专门用于处理和分析皮肤黑色素病变图像。这种方法的核心在于对经典的UNet架构进行创新性的改进,通过引入多尺度模块和SE(Squeeze-and-Excitation)注意力机制,显著提升了分割网络对皮肤病变特征的捕捉能力。多尺度模块使得网络能够有效地处理不同大小和形状的病变区域,而SE注意力机制则进一步增强了网络对关键特征的聚焦能力,从而提高了分割的准确性和鲁棒性,并且将Chan-Vese(CV)算法的能量概念整合到U-Net模型的损失函数中,来进一步处理像素级损失的问题。所述方法包括以下步骤:

2.根据权利要求1所述的方法...

【技术特征摘要】

1.本发明提出了一种先进的皮肤病变图像分割方法,专门用于处理和分析皮肤黑色素病变图像。这种方法的核心在于对经典的unet架构进行创新性的改进,通过引入多尺度模块和se(squeeze-and-excitation)注意力机制,显著提升了分割网络对皮肤病变特征的捕捉能力。多尺度模块使得网络能够有效地处理不同大小和形状的病变区域,而se注意力机制则进一步增强了网络对关键特征的聚焦能力...

【专利技术属性】
技术研发人员:吴梦麟陈贻辕
申请(专利权)人:南京工业大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1