【技术实现步骤摘要】
本专利技术属于数据压缩重构,具体涉及一种基于目标显著性特征的数据压缩重建方法。
技术介绍
1、随着大数据应用的不断发展,各类传感器的数据量不断上升,这种日益增长的庞大数据量正在不断挑战着存储资源的极限,建立一种可以实现数据压缩以有效降低存储空间的智能算法迫在眉睫。目前已有一些现有工作,这些工作通常采用目标检测或显著性检测、图像分割等计算机视觉技术,通过将原始数据分割成不同区域,优先保留包含显著性特征的区域的信息,从而在保持主要内容的同时减小数据量。
2、然而,这些现有技术在处理复杂场景或具有多个显著性对象的图像或视频时,存在一些问题。例如,由于目标检测模型的误判,他们可能将一些非关键信息也进行保存,导致信息冗余。此外,现有技术可能有效利用目标检测模型所提供的类别信息,获取到目标间的关联关系,使得在与目标相关的重建过程中将干扰数据融入到数据生成模型中,降低数据重建时的准确性。
3、因此,目前数据压缩重建技术在处理复杂场景或多个显著性对象的图像或视频时存在保存信息冗杂、数据重建的准确性低的问题。
【技术保护点】
1.一种基于目标显著性特征的数据压缩重建方法,其特征在于,包括:
2.根据权利要求1所述的方法,其特征在于,所述将原始图像分为若干批次,并对分批后的目标批次的原始图像进行预处理的步骤包括:
3.根据权利要求2所述的方法,其特征在于,所述模型检测结果的包括:目标类别标签、目标所处外框线、目标重心、目标编号以及目标总量。
4.根据权利要求3所述的方法,其特征在于,所述对预处理后的原始图像进行网格拆分,并按照与所述所需目标数据集合和所述其他目标数据集合的归属关系对拆分后的网格进行分组存储和初步数据压缩,获得其他目标数据压缩存储结果、背景压
...【技术特征摘要】
1.一种基于目标显著性特征的数据压缩重建方法,其特征在于,包括:
2.根据权利要求1所述的方法,其特征在于,所述将原始图像分为若干批次,并对分批后的目标批次的原始图像进行预处理的步骤包括:
3.根据权利要求2所述的方法,其特征在于,所述模型检测结果的包括:目标类别标签、目标所处外框线、目标重心、目标编号以及目标总量。
4.根据权利要求3所述的方法,其特征在于,所述对预处理后的原始图像进行网格拆分,并按照与所述所需目标数据集合和所述其他目标数据集合的归属关系对拆分后的网格进行分组存储和初步数据压缩,获得其他目标数据压缩存储结果、背景压缩存储结果以及所需目标数据压缩存储结果的步骤包括:
5.根据权利要求4所述的方法,其特征在于,所述所需目标网格集合为所需目标所处外框线所在及其范围内的所有网格图像;所述其他目标网格集合为其他目标所处外框线所在及其范围内的所有网格图像;所述背景网格集合为剩余所有其他网格图像。
6.根据权利要求4所述的方法,其特征在于,...
【专利技术属性】
技术研发人员:苏毅,刘雨蒙,赵怡婧,陈洁,张博平,
申请(专利权)人:北京遥感设备研究所,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。