一种基于风格迁移的自动骨龄预测方法技术

技术编号:39938905 阅读:20 留言:0更新日期:2024-01-08 22:24
本发明专利技术属于自适应骨龄预测领域,具体涉及一种基于风格迁移的自动骨龄预测方法,包括:获取源域数据和目标域数据,对源域数据和目标域数据进行图像增强和风格迁移处理;将源域图像通过图定位网络得到骨龄感兴趣区域,保存权重,原图根据ROI裁剪出特征区域,将特征区域输入骨龄回归网络,得到骨龄并保存目标域权重;将目标域图像输入风格迁移网络,通过风格迁移网络得到与目标域类似的手骨数据集;将手骨数据集输入源域训练保存的权重模型,通过迁移学习,并重复定位和预测得到ROI和高准确度的骨龄;本发明专利技术通过源域对目标域的风格迁移,在不添加额外标签的情况下实现数据风格和像素分布的统一,提升了热图定位的能力和骨龄预测的准确度。

【技术实现步骤摘要】

本专利技术属于自适应和骨龄预测领域,具体涉及一种基于风格迁移的自动骨龄预测方法


技术介绍

1、骨龄评估在了解孩子的生长发育情况上扮演着重要角色,它是由儿科医生和儿科内分泌学家进行的一项医学检查。该评估方法通过比较儿童的骨骼骨龄与实际年龄的差异,用于诊断和治疗儿童和青少年的生长和内分泌失调,并预测他们的最终成人身高。此外,它还可应用于涉及脊柱矫正、下肢均衡等外科手术的诊治,以及体育和司法鉴定领域。然而,传统的人工骨龄评估存在一些缺点。首先,它具有较强的主观性和不一致性,不同医生评估同一张x光片的骨龄结果往往不同,即使是同一医生在不同时期评估同一张x光片的骨龄结果也可能不同。其次,骨龄评估需要具备专业知识,并经过长时间的严格培训,评估过程耗时较长。

2、深度神经网络在医学领域得到了广泛的应用,因为使用深度学习方法自动估计骨龄比人工判断骨龄快得多,同时准确率也远远超过传统方法。

3、hyunkwanglee等人使用googlenet作为主干,通过显示g&p地图集的三到五个参考图像来确定最终骨龄。toanducbui等人分别使用f本文档来自技高网...

【技术保护点】

1.一种基于风格迁移的自动骨龄预测方法,其特征在于,包括:获取源域图像集和目标域图像集;采用骨龄预测模型对源域图像处理;根据源域图像的处理结果将目标域图像输入到骨龄预测模型中,得到骨龄预测结果;

2.根据权利要求1所述的一种基于风格迁移的自动骨龄预测方法,其特征在于,采用风格迁移网络将目标域图像转换为源域风格图像包括:将源域图像和目标域图像进行二值化处理,得到边框和Sober算子提取轮廓;根据边框和Sober算子提取轮廓对源域图像和目标域图像进行裁剪,得到手骨图;根据目标域的像素直方图采用AHE对源域图像进行处理,将处理后的图像输入到Cyclegan网络中进行滤波处理,得到源...

【技术特征摘要】

1.一种基于风格迁移的自动骨龄预测方法,其特征在于,包括:获取源域图像集和目标域图像集;采用骨龄预测模型对源域图像处理;根据源域图像的处理结果将目标域图像输入到骨龄预测模型中,得到骨龄预测结果;

2.根据权利要求1所述的一种基于风格迁移的自动骨龄预测方法,其特征在于,采用风格迁移网络将目标域图像转换为源域风格图像包括:将源域图像和目标域图像进行二值化处理,得到边框和sober算子提取轮廓;根据边框和sober算子提取轮廓对源域图像和目标域图像进行裁剪,得到手骨图;根据目标域的像素直方图采用ahe对源域图像进行处理,将处理后的图像输入到cyclegan网络中进行滤波处理,得到源域风格图像。

3.根据权利要求2所述的一种基于风格迁移的自动骨龄预测方法,其特征在于,采用ahe对源域图像进行处理包括:设置阈值;根据设置的阈值对源域图像进行修正;采用自适应直方图均衡化算法对修正后的源域图像进行亮度增强和对比度增强处理。

4.根据权利要求2所述的一种基于风格迁移的自动骨龄预测方法,其特征在于,cyclegan网络对处理后的图像进行滤波处理的过程包括:

5.根据权利要求1所述的一种基于风格迁移的自动骨龄预测方法,其特征在于,采用注意力机制对目标域风格的源域图像进行感兴趣区...

【专利技术属性】
技术研发人员:姜小明胡永波邱斌王伟李章勇
申请(专利权)人:重庆邮电大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1