土石堤坝渗漏程度的精细化辨识巡查方法及装置制造方法及图纸

技术编号:39066882 阅读:28 留言:0更新日期:2023-10-12 19:59
本发明专利技术涉及土石堤坝渗漏程度的精细化辨识巡查方法及装置,通过无人机搭载高光谱成像仪拍摄土石堤坝坝面,利用两次阈值设置提取渗漏区域,根据渗漏区域面积变化和光谱反射率统计参数的变化分别定义渗漏区域的扩散度和含水量变化,利用含水量变化和扩散度的数值评估渗漏程度。本发明专利技术的装置和方法能够提高堤坝异常渗漏险情的精准辨识能力,提升灾害防御的自动化和智能化水平。动化和智能化水平。动化和智能化水平。

【技术实现步骤摘要】
土石堤坝渗漏程度的精细化辨识巡查方法及装置


[0001]本专利技术属于土石堤坝渗漏检测
,具体涉及土石堤坝渗漏程度的精细化辨识巡查方法及装置。

技术介绍

[0002]土石堤坝是水利工程的重要组成部分,能够保障人民的生命财产安全。渗漏作为土石堤坝主要的隐患之一,具有一定的隐蔽性和不确定性,严重时会诱发溃坝灾害。对土石堤坝渗漏隐患进行监测与诊断,成为土石堤坝健康状态解释及服役寿命预测中亟待解决的关键问题。现行巡堤查漏技术存在许多不足:

基层抢险经验不足、技术人员缺乏,极难准确识别隐蔽性很强的异常渗漏险情;

基于电法、电磁法以及地震法的地球物理探测技术呈现多样性发展,各技术应用存在多解性和局限性;

采用机载红外热像技术对堤坝进行渗漏检测,以低温区域判定为渗漏点,但堤坝表面坑凹、积水和植被覆盖情况普遍且都呈现低温,引起“类渗漏”干扰,则误判率极高。

同位素示踪法需要渗漏源,人工示踪剂投放困难且观测周期较长,放射性示踪剂对环境存在不利影响。
[0003]高光谱成像技术常用于精准农业、环境监测、食品安全以及油气勘探等领域,但由于土石堤坝坝面环境复杂性和工作场景的特殊性,缺乏精细化识别渗漏情况评价指标区分“类渗漏”,以及建立渗漏程度等级,因此该技术在土石堤坝渗漏检测的可行性还需适配巡查方法验证。

技术实现思路

[0004]本专利技术的目的在于克服上述现有技术存在的缺陷,提供土石堤坝渗漏程度的精细化辨识巡查方法及装置。/>[0005]为实现上述目的,本专利技术采用如下技术方案:土石堤坝渗漏程度的精细化辨识巡查方法,包括:利用无人机携带高光谱成像仪巡检土石堤坝下游面,拍摄堤坝下游面光谱图,通过预设特征波段光谱反射率阈值提取疑似存在水体部位;无人机复飞,巡检疑似存在水体部位并拍摄高光谱图像,从高光谱图像提取pH≥阈值的区域作为渗漏区域,获取渗漏区域光谱反射率的统计参数,并计算渗漏区域面积;无人机间隔预设时间T后再次复飞,巡检所述渗漏区域并拍摄高光谱图像,重新计算渗漏区域光谱反射率的统计参数和渗漏区域面积;基于两次复飞的光谱反射率的统计参数的比值和渗漏区域面积比值表征渗漏区域的含水量变化和扩散度,利用含水量变化和扩散度的数值评估渗漏程度。
[0006]作为一种优选的实施方式,pH阈值的确定方式为:利用高光谱成像仪分别拍摄土石堤坝中已确定的降雨积水区域和渗漏水区域,并分析水体特征波段中降雨积水区域和渗漏水区域的光谱反射率数值,基于该数值设置可区分降雨积水和渗漏水的阈值。优选的,pH阈值设定为7。
[0007]作为一种优选的实施方式,在识别疑似存在水体部位或渗漏区域后,记录无人机的定位和飞行参数,用于控制无人机复飞位置。
[0008]作为一种优选的实施方式,第一次飞行时,设定无人机巡检线路,如果坝体高度H <15m,则设置1条航拍线路,调整无人机的高度,使得高光谱成像仪的拍摄视野能够覆盖坝体整个下游面,然后沿着坝轴线方向航拍一次,完成整个坝体下游面的巡检;如果坝体高度15m≤H<30m,则设置2条平行的航拍线路,调整无人机的高度,使得2条航拍线路的拍摄视野能够覆盖坝体整个下游面,然后沿着坝轴线方向航拍2次,完成整个坝体下游面的巡检。
[0009]作为一种优选的实施方式,在识别疑似存在水体部位后触发报警,同时记录无人机的定位和飞行参数。
[0010]作为一种优选的实施方式,对高光谱图像的光谱反射率进行一阶微分处理后,进行疑似存在水体部位和渗漏区域的提取。一阶微分处理能够增强渗漏区域内含水量的光谱差异性,便于分析复飞和再次复飞特征波段反射率变化。
[0011]作为一种优选的实施方式,所述光谱反射率的统计参数为渗漏处特征波段的光谱反射率的极小值。
[0012]作为一种优选的实施方式,所述利用含水量变化和扩散度数值评估渗漏程度的方式为:当1<r<1.2且1<k<1.3,判定此时为轻微散浸阶段;当1.2≤r且1.3≤k<1.5时,判定为快速渗漏阶段;当r=1且1.5<k时,判定为渗透破坏阶段。
[0013]作为一种优选的实施方式,所述方法还包括,在第一次复飞确定渗漏区域后,利用PVC管围成将渗漏区域包含在内的规则四边形,四边形与渗漏区域之间预留渗漏空间;利用四边形面积作为计算参考,计算复飞和再次复飞时的实际渗漏区域面积。
[0014]本专利技术的另一目的在于提供上述方法使用的装置,包括无人机、无人机上搭载的高光谱成像仪、地面遥控台、PVC管和灰布;所述PVC管围成规则四边形,将渗漏区域包含在内;所述灰布放置于拍摄区域;所述地面遥控台接收高光谱成像仪拍摄的高光谱图像并进行数据处理,包括:分类识别及报警模块、区域面积估算模块、光谱特征提取模块、渗漏程度评估模块;所述分类识别及报警模块分别基于预设特征波段光谱反射率阈值和pH阈值进行疑似存在水体部位和渗漏区域的提取,并在发现疑似存在水体部位时进行报警;所述区域面积估算模块对提取的渗漏区域进行面积估算;所述光谱特征提取模块获取渗漏区域光谱反射率的统计参数;所述渗漏程度评估模块基于两次复飞的光谱反射率的统计参数的比值和渗漏区域面积比值表征渗漏区域的含水量变化和扩散度,利用含水量变化和扩散度的数值评估渗漏程度。
[0015]本专利技术的识别原理如下:第一次飞行时,由于不同物体的光谱信息不同,对高光谱影像数据进行不同地物种分类识别,通过设定特征波段光谱反射率域值R0,排除植被,坑洼等无关信息干扰,对疑似有水部位报警并记录。复飞时,重新设定阈值用于区分不同pH的水体,对疑似有水报警区域进行光谱信息分析,筛分降雨积水还是水库渗漏水,并对渗漏水进行收集光谱信息,绘制反射率R1曲线,观察波段峰值和波谷,获取光谱数据反射率统计参数
R1',并计算其渗漏区域面积S1。降雨积水由于溶解了空气中的二氧化碳等生成碳酸等物质,降雨积水呈弱酸性,而大坝渗漏水通常呈碱性,可设置pH阈值区分。再次复飞时,绘制反射率R2曲线,获取光谱数据反射率统计参数R2',以及渗水区面积S2,计算反射率变化r=R1'/R2'(表示土壤含水量变化情况,即含水度)和面积变化率k= S2/S1(表示渗漏区域扩散程度变化,即扩散度),利用含水度和扩散度综合评估渗漏情况。
[0016]由于渗漏区域水量的不断增加会使得渗漏区域面积增大,而含水量的增大会使光谱反射率降低。当1<r<1.2,1<k<1.3时,出渗处的水浸湿周围土体,渗漏区域土体含水量会增加,渗漏面积发生扩增,但因未形成可见水流,R1'和R2'值较大,判定此时为轻微散浸阶段;当1.2≤r,1.3≤k<1.5时,出现可见水流不断溢出,渗漏区域的渗漏面积和含水度均不断增加,判定为快速渗漏阶段;当r=1,1.5<k时,渗透区域土体近似达到饱和状态,含水度无明显变化,且R1'和R2'值较小,而坝面浸湿土体的面本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.土石堤坝渗漏程度的精细化辨识巡查方法,其特征在于,包括:利用无人机携带高光谱成像仪巡检土石堤坝下游面,拍摄堤坝下游面光谱图,通过预设特征波段光谱反射率阈值提取疑似存在水体部位;无人机复飞,巡检疑似存在水体部位并拍摄高光谱图像,从高光谱图像提取pH≥阈值的区域作为渗漏区域,获取渗漏区域光谱反射率的统计参数,并计算渗漏区域面积;无人机间隔预设时间T后再次复飞,巡检所述渗漏区域并拍摄高光谱图像,重新计算渗漏区域光谱反射率的统计参数和渗漏区域面积;基于两次复飞的光谱反射率的统计参数的比值和渗漏区域面积比值表征渗漏区域的含水量变化和扩散度,利用含水量变化和扩散度的数值评估渗漏程度。2.根据权利要求1所述的方法,其特征在于,pH阈值的确定方式为:利用高光谱成像仪分别拍摄土石堤坝中已确定的降雨积水区域和渗漏水区域,并分析水体特征波段中降雨积水区域和渗漏水区域的光谱反射率数值,基于该数值设置可区分降雨积水和渗漏水的阈值。3.根据权利要求2所述的方法,其特征在于,pH阈值设定为7。4.根据权利要求1所述的方法,其特征在于,在识别疑似存在水体部位或渗漏区域后,记录无人机的定位和飞行参数,用于控制无人机复飞位置。5.根据权利要求1或4所述的方法,其特征在于,在识别疑似存在水体部位后触发报警,同时记录无人机的定位和飞行参数。6.根据权利要求1所述的方法,其特征在于,对高光谱图像的光谱反射率进行一阶微分处理后,进行疑似存在水体部位和渗漏区域的提取。7.根据权利要求1所述的方法,其特征在于,所述光谱反射率的统计参数为渗漏处特征波段的光谱反射率的极小值。8.根据权利要求1所述的方法,其特征在于...

【专利技术属性】
技术研发人员:李坡汤雷张盛行明攀王宇琨温嘉琦占其兵王玉磊田辉
申请(专利权)人:水利部交通运输部国家能源局南京水利科学研究院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1