一种混合澄清槽的仿真模拟系统及其计算方法技术方案

技术编号:38915660 阅读:12 留言:0更新日期:2023-09-25 09:29
本发明专利技术涉及一种混合澄清槽的仿真模拟系统及其计算方法,包括初始外部变量输入模块、中间过程外部变量输入模块、混合室仿真计算模块、澄清室仿真计算模块以及迭代控制模块,通过设定初始流量参数和混合澄清槽设备参数,设定仿真模拟过程中外部流量参数的变化,根据设定的初始流量参数和中间过程外部变量的相关数据仿真计算混合室的运行状态以澄清室的运行状态,控制迭代计算过程的最小时间单位和迭代次数以进行迭代运算。采用本发明专利技术中公开的方法,综合应用压强平衡、堰流模型、萃取平衡、非均相混合过程等多种理论模型,通过数值模拟的方法构建了混合澄清槽液体体积和流量的仿真系统,为稀土萃取分离智能化控制系统的搭建提供可靠数据支撑。供可靠数据支撑。供可靠数据支撑。

【技术实现步骤摘要】
一种混合澄清槽的仿真模拟系统及其计算方法


[0001]本专利技术属于溶剂萃取分离
,具体涉及一种混合澄清槽的仿真模拟系统及其计算方法。

技术介绍

[0002]作为一种重要的战略资源,稀土是许多高新技术工业领域的关键性原材料。目前已发现的稀土矿(如氟碳铈矿、独居石、离子吸附型稀土矿等)均为几种至十几种稀土元素的共伴生矿,混合稀土元素的高纯度、高质量、低成本分离对于稀土资源的综合高效利用至关重要。
[0003]自20世纪70年代以来,徐光宪院士等人创立的串级萃取理论使中国的稀土分离理论与技术领先世界,在该理论的指导下,又进一步发展了计算机仿真模拟技术、联动萃取分离技术等,不断引领我国稀土分离科技与产业的革新。目前,基于混合澄清槽等湿法冶金设备的溶剂萃取分离方法已经成为稀土分离领域的主流技术。
[0004]进入21世纪,在我国工业制造业全面转型升级和计算机技术与传统制造业深度交融的大背景下,对稀土萃取分离技术提出了更高的发展要求,萃取分离过程的全面自动化、智能化成为日益迫切的现实需求。
[0005]在智能化控制系统的研究过程中,大多数专利和文章聚焦于萃取平衡问题的理论研究,对于混合澄清槽实际运行过程中存在的随时间不断变化的体积平衡和流量平衡问题关注较少。然而,大量的稀土萃取分离实践经验表明,混合澄清槽的体积平衡和流量平衡问题对萃取分离生产线的控制至关重要。
[0006]随着生产线运行状态的调整变化,混合澄清槽中的两相存槽体积和进出混合澄清槽流量也在不断变化,并且这种变化具有显著的非线性和滞后性特征。槽体的体积平衡和流量平衡控制会直接影响萃取分离生产线输出的稀土产品质量。构建稀土萃取分离过程的混合澄清槽的仿真模拟系统,是构建稀土萃取分离智能控制系统的关键环节。

技术实现思路

[0007]针对现有技术中存在的缺陷,本专利技术的目的在于提供一种混合澄清槽的仿真模拟系统及其计算方法,应用于稀土萃取分离过程,针对稀土萃取分离过程中存在的体积平衡和流量平衡问题,综合应用压强平衡、堰流模型、萃取平衡、非均相混合过程等多种理论模型,通过数值计算的方法来模拟混合澄清槽的实际运行方式,为稀土萃取分离智能化控制系统的搭建提供可靠数据支撑。
[0008]为达到以上目的,本专利技术采用的技术方案是:
[0009]第一方面,一种混合澄清槽的仿真模拟系统,所述系统包括初始外部变量输入模块,用于设定初始流量参数和混合澄清槽设备参数,所述混合澄清槽的单级槽体包括混合室与澄清室,单级槽体的水相和有机相分别在各级槽体间逆流流动;
[0010]中间过程外部变量输入模块,用于设定仿真模拟过程中外部流量参数的变化;
[0011]混合室仿真计算模块,用于根据所述初始外部变量输入模块和所述中间过程外部变量输入模块中的相关数据仿真计算混合室的运行状态;
[0012]澄清室仿真计算模块,用于根据所述初始外部变量输入模块和所述中间过程外部变量输入模块中的相关数据仿真计算澄清室的运行状态;
[0013]以及迭代控制模块,用于控制迭代计算过程的最小时间单位和迭代次数以进行迭代运算。
[0014]进一步,所述初始流量参数包括从外部进入混合澄清槽的有机相初始流量和水相初始流量。
[0015]进一步,所述混合澄清槽设备参数包括槽体总级数、混合室体积、初始混合室相比、澄清室体积、澄清室有机相溢流堰高、澄清室水相溢流堰高、澄清室有机溢流等效堰宽以及澄清室水相溢流等效堰宽。
[0016]进一步,所述外部流量参数包括仿真模拟过程中从外部进入混合澄清槽的有机相流量以及水相流量。
[0017]进一步,所述混合室仿真计算模块进行仿真计算所使用的基本公式包括非均相混合过程公式以及萃取平衡公式。
[0018]进一步,所述非均相混合过程公式,描述如下:
[0019][0020]其中:γ(t)为t时刻的相比(有机相体积/水相体积);
[0021]γ(t+1为t+1时刻的相比(有机相体积/水相体积);
[0022]γ
F
为进料料液的相比(有机相流量/水相流量);
[0023]F为进料总流量;
[0024]V为存槽总体积。
[0025]进一步,含A、B两组分的混合澄清槽,所述萃取平衡公式描述如下:
[0026][0027]其中:为有机相中A组分摩尔浓度;
[0028]A为水相中A组分摩尔浓度;
[0029]为有机相中B组分摩尔浓度;
[0030]B为水相中B组分摩尔浓度;
[0031]β
A/B
为萃取分离系数。
[0032]进一步,所述澄清室仿真计算模块所使用的基本公式,包括两相压强平衡公式以及堰流公式,所述两相压强平衡公式,描述如下:
[0033][0034]其中:ρ
o
为澄清室有机相密度;
[0035]h
o
为澄清室有机相高度;
[0036]ρ
a
为澄清室水相密度;
[0037]h
a
为澄清室水相高度;
[0038]H为水相溢流堰高度;
[0039]H0为水相堰上水头高度。
[0040]进一步,所述堰流类型为薄壁堰,堰流公式描述如下:
[0041][0042]其中:
[0043]Q为单位时间内水相或有机相的堰流流量;
[0044]m为堰流系数,根据溢流堰的不同结构其取值范围在0至10之间;
[0045]B为等效堰宽;
[0046]g为重力加速度常数;
[0047]H0为堰上水头高度。
[0048]第二方面,一种混合澄清槽的仿真模拟计算方法,所述方法基于如本专利技术第一方面及其任一可选实施方式所述的一种混合澄清槽的仿真模拟系统,所述方法包括以下步骤:
[0049]S1、设定初始流量参数和混合澄清槽设备参数,所述混合澄清槽的单级槽体包括混合室与澄清室,单级槽体的水相和有机相分别在各级槽体间逆流流动;
[0050]S2、设定仿真模拟过程中外部流量参数的变化;
[0051]S3、根据步骤S1和步骤S2中设定的相关数据仿真计算混合室的运行状态;
[0052]S4、根据步骤S1和步骤S2中设定的相关数据仿真计算澄清室的运行状态;
[0053]S5、控制迭代计算过程的最小时间单位和迭代次数以进行迭代运算。
[0054]本专利技术的有益技术效果在于:采用本专利技术所公开的一种混合澄清槽的仿真模拟计算方法,可以通过理论计算的方法模拟萃取分离生产线运行过程中的体积平衡和流量平衡过程;根据仿真模拟结果,可以分析并预测萃取分离生产线运行状态,为生产线的控制提供理论依据和数据支持;体积流量平衡仿真模拟系统是构建稀土萃取分离智能控制系统的关键环节,是实现稀土分离生产智能化的重要基础之一。
附图说明
[0055]图1为本专利技术实施例一中示出的一种混合澄清槽的仿真模拟系统的结构示意图本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种混合澄清槽的仿真模拟系统,其特征在于:所述系统包括初始外部变量输入模块,用于设定初始流量参数和混合澄清槽设备参数,所述混合澄清槽的单级槽体包括混合室与澄清室,单级槽体的水相和有机相分别在各级槽体间逆流流动;中间过程外部变量输入模块,用于设定仿真模拟过程中外部流量参数的变化;混合室仿真计算模块,用于根据所述初始外部变量输入模块和所述中间过程外部变量输入模块中的相关数据仿真计算混合室的运行状态;澄清室仿真计算模块,用于根据所述初始外部变量输入模块和所述中间过程外部变量输入模块中的相关数据仿真计算澄清室的运行状态;以及迭代控制模块,用于控制迭代计算过程的最小时间单位和迭代次数以进行迭代运算。2.如权利要求1所述的一种混合澄清槽的仿真模拟系统,其特征在于:所述初始流量参数包括从外部进入混合澄清槽的有机相初始流量和水相初始流量。3.如权利要求1所述的一种混合澄清槽的仿真模拟系统,其特征在于:所述混合澄清槽设备参数包括槽体总级数、混合室体积、初始混合室相比、澄清室体积、澄清室有机相溢流堰高、澄清室水相溢流堰高、澄清室有机溢流等效堰宽以及澄清室水相溢流等效堰宽。4.如权利要求1所述的一种混合澄清槽的仿真模拟系统,其特征在于:所述外部流量参数包括仿真模拟过程中从外部进入混合澄清槽的有机相流量以及水相流量。5.如权利要求1所述的一种混合澄清槽的仿真模拟系统,其特征在于:所述混合室仿真计算模块进行仿真计算所使用的基本公式包括非均相混合过程公式以及萃取平衡公式。6.如权利要求5所述的一种混合澄清槽的仿真模拟系统,其特征在于:所述非均相混合过程公式,描述如下:其中:γ(t)为t时刻的相比(有机相体积/水相体积);γ(t+1)为t+1时刻的相比(有机相体积/水相体积);γ
F
为进料料液的相比(有机相流量/水相流量);F为进料总流量...

【专利技术属性】
技术研发人员:常智舵吴声王嵩龄程福祥廖春生冯凯刘艳
申请(专利权)人:中稀北京稀土研究院有限公司
类型:发明
国别省市:

相关技术
    暂无相关专利
网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1