绝缘胶、绝缘胶带及绝缘胶的制备方法技术

技术编号:38335729 阅读:6 留言:0更新日期:2023-08-02 09:16
本申请公开了一种绝缘胶、绝缘胶带及绝缘胶的制备方法。其中,该绝缘胶包括:绝缘胶体、以及掺杂于绝缘胶体内的绝缘颗粒。其中,绝缘颗粒的击穿场强大于绝缘胶体的击穿场强。由于绝缘颗粒的击穿场强大于绝缘胶体的击穿场强,因此,绝缘胶体比绝缘颗粒更容易击穿。当静电放电电流作用于该绝缘胶时,静电放电电流将击穿绝缘性能更差、更容易击穿的绝缘胶体,而绕过绝缘性能更好、更难击穿的绝缘颗粒,使得静电放电电流的击穿路径变长,击穿绝缘胶所需的击穿电压将增加,从而提升了绝缘胶的绝缘性能。能。能。

【技术实现步骤摘要】
绝缘胶、绝缘胶带及绝缘胶的制备方法
[0001]本案是分案申请,原申请的申请号是202111310407.0,原申请的申请日是2021年11月04日,原申请的全部内容通过引用结合在本申请中。


[0002]本申请涉及绝缘胶
,尤其涉及一种绝缘胶、绝缘胶带及绝缘胶的制备方法。

技术介绍

[0003]手机、平板等电子设备的两两壳体部件之间不可避免地存在缝隙。出于防尘防水等目的,通常使用绝缘胶带进行粘合,以阻断该缝隙。该绝缘胶带通常由绝缘薄膜和粘在绝缘薄膜上的绝缘胶层构成。为了使得绝缘胶层具备粘性,绝缘胶层需要掺杂粘性物质,从而使得其绝缘性低于绝缘薄膜,成为绝缘薄弱区。当缝隙两边的壳体部件为绝缘体时,缝隙将存在静电放电风险,产生静电放电(ESD,electro

static discharge)电流,该ESD电流有可能沿着绝缘胶层的粘接面所在方向击穿绝缘胶层,进而造成电子设备内部器件损坏。
[0004]可见,电子设备是否具有足够的静电防护能力以阻挡静电放电,很大程度上依赖绝缘胶层的绝缘性能。因此,如何提高用于静电防护的绝缘胶层的绝缘性能,对于保障电子设备的可靠性至关重要。目前常用的方式无法有效保证绝缘胶层在粘接面所在方向的绝缘性能。

技术实现思路

[0005]本申请实施例提供一种绝缘胶、绝缘胶带及绝缘胶的制备方法,用于解决现有技术中无法有效保证绝缘胶层在粘接面所在方向的绝缘性能的问题。
[0006]为达到上述目的,本申请的实施例采用如下技术方案:
[0007]第一方面,提供了一种绝缘胶。该绝缘胶包括:绝缘胶体、以及掺杂于绝缘胶体内的绝缘颗粒。其中,绝缘颗粒的击穿场强大于绝缘胶体的击穿场强,且绝缘颗粒为高电负性非极性绝缘微粒。
[0008]该绝缘胶中,由于绝缘颗粒的击穿场强大于绝缘胶体的击穿场强,因此,绝缘胶体比绝缘颗粒更容易击穿。当ESD电流作用于该绝缘胶时,ESD电流将击穿绝缘性能更差、更容易击穿的绝缘胶体,而绕过绝缘性能更好、更难击穿的绝缘颗粒,使得ESD电流的击穿路径变长,击穿绝缘胶所需的击穿电压将增加,从而提升了绝缘胶的绝缘性能。
[0009]应理解,绝缘胶内的绝缘颗粒通过掺杂的方式嵌入绝缘胶体内,因此,绝缘颗粒将分布在绝缘胶体的任意位置。换而言之,绝缘胶在任意方向所呈现的绝缘性能从宏观上来说是无差异的,对于来自于任意方向的ESD电流,该绝缘胶均可以通过加长该ESD电流的击穿路径的长度的方式,提升自身被击穿的击穿电压,从而提升各方向的绝缘性能。基于此,当绝缘胶作为绝缘胶层存在时,自然,该绝缘胶层沿粘接面所在方向的绝缘性能也可以得到提升。
[0010]此外,绝缘颗粒为高电负性非极性绝缘微粒。
[0011]一方面,绝缘颗粒为高电负性绝缘颗粒。需要说明的是,高负性是指绝缘颗粒的电负性高于绝缘胶体的电负性。
[0012]该实施例中,绝缘颗粒的电负性代表其吸附电子能力。当绝缘颗粒的电负性高于绝缘胶体的电负性时,绝缘颗粒具有高电负性。相比于低电负性的情况而言,更高的电负性使得其具有较强的吸附电子能力。在此基础上,大量电子被绝缘颗粒的表面所吸附,使得绝缘颗粒周围介质中的电子数量减少。随着绝缘颗粒周围介质中的电子数量减少,绝缘颗粒周围介质中碰撞电离现象将减弱,从而使得绝缘颗粒周围介质中的离子数量骤减,该绝缘颗粒周围介质难以被击穿,从而提高了绝缘胶的耐电击穿能力,即绝缘性能。
[0013]另一方面,绝缘颗粒为非极性绝缘颗粒。相比于绝缘颗粒为极性的情况,当绝缘颗粒为非极性时,两两相邻的绝缘颗粒之间将不会产生与击穿场强方向相同的内电场。在此情况下,绝缘胶沿击穿方向的总电场将不会为内电场和击穿场强之和,从而不会削弱绝缘胶的绝缘性能。
[0014]可选地,绝缘胶体的材料包括橡胶或材料。
[0015]进一步地,用于掺杂形成绝缘颗粒的绝缘材料包括四氟乙烯和/或四氟乙烯聚合物。该绝缘材料的绝缘颗粒同时具备高电负性和非极性,因此,高电负性保证了绝缘颗粒的掺杂可以提高绝缘胶的绝缘性能的同时,非极性保证了绝缘颗粒的掺杂不会削弱绝缘胶的绝缘性能。
[0016]更进一步地,四氟乙烯聚合物包括聚四氟乙烯、四氟乙烯-六氟丙烯共聚物、全氟丙基全氟乙烯基醚-聚四氟乙烯共聚物中的一种或多种。
[0017]可选地,绝缘颗粒与绝缘胶体的质量比为30%至60%。绝缘颗粒的掺杂比例不宜过高,也不宜过低。由于绝缘颗粒不具备粘性,当掺杂比例过高时,绝缘胶的粘性和强度将降低。当掺杂比例过低时,对于绝缘胶的绝缘性能的改善效果不明显。本实施例中,控制绝缘颗粒与绝缘胶体的质量比为30%至60%,一方面可以保证绝缘胶的粘性和强度,另一方面还可以保障绝缘胶的绝缘性能。
[0018]第二方面,提供了一种绝缘胶带。该绝缘胶带包括:第一薄膜层、以及胶体层,胶体层层叠于第一薄膜层上。其中,胶体层由第一方面任一项所述的绝缘胶制成。
[0019]在本申请的一些实施例中,绝缘颗粒的直径小于胶体层的厚度的十分之一。应理解,绝缘颗粒的直径不宜过大,也不宜过小。若绝缘颗粒的直径过大,分布在胶体层的表面的不具备粘性的绝缘颗粒,将使得胶体层的表面粘性过低;分布在胶体层内的不具备粘性的绝缘颗粒,将不容易和绝缘胶体粘合,导致胶体层的整体强度较低。并且,两两绝缘颗粒之间的绝缘胶体较薄,导致胶体层容易开裂。
[0020]在本申请的一些实施例中,上述绝缘胶带还包括第二薄膜层。第二薄膜层层叠于胶体层远离第一薄膜层的表面。第二薄膜层的存在使得胶体层在使用之前均可以得到保护。
[0021]第三方面,提供了一种绝缘胶的制备方法。该绝缘胶的制备方法包括:将绝缘胶体加工至熔融态。将绝缘颗粒掺杂至熔融态的绝缘胶体中并混合,获得待处理绝缘胶。其中,绝缘颗粒的击穿场强大于绝缘胶体的击穿场强,且绝缘颗粒为高电负性非极性绝缘微粒。对待处理绝缘胶进行冷却处理,获得绝缘胶。
[0022]可选地,绝缘胶体的材料包括橡胶或材料。
[0023]进一步地,用于掺杂形成绝缘颗粒的绝缘材料包括四氟乙烯和/或四氟乙烯聚合物。
[0024]更进一步地,四氟乙烯聚合物包括聚四氟乙烯、四氟乙烯-六氟丙烯共聚物、全氟丙基全氟乙烯基醚

聚四氟乙烯共聚物中的一种或多种。
[0025]可选地,绝缘颗粒和绝缘胶体的质量比为30%至60%。
[0026]需要说明的是,第二方面至第三方面中任一实施例所带来的技术效果可参见第一方面中相应实施例所带来的技术效果,此处不再赘述。
附图说明
[0027]图1a为本申请一些实施例提供的电子设备的结构示意图;
[0028]图1b为图1a沿A1

A1线剖切所得的剖面图;
[0029]图1c为图1b中区域X的局部放大图;
[0030]图2为一种可能的设计方案中绝缘胶层的结构示意图;
[0031]图3为本申请一些实施例提供的绝缘胶带的剖面结构示意图;
[0032]图4本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种壳体组件,其特征在于,用于保护电子设备中的摄像头模组,所述摄像头模组位于所述壳体组件的一侧,所述壳体组件包括:后壳以及安装于所述后壳上的摄像头支架,所述摄像头支架与所述壳体之间具有缝隙;所述后壳上连接有绝缘胶带,所述绝缘胶带位于所述后壳与所述摄像头模组之间,所述绝缘胶带将所述缝隙与所述摄像头模组隔绝;所述绝缘胶带包括:绝缘胶体和绝缘颗粒,所述绝缘颗粒掺杂于所述绝缘胶体内;其中,所述绝缘颗粒的击穿场强大于所述绝缘胶体的击穿场强,且所述绝缘颗粒为高电负性非极性绝缘微粒,所述绝缘颗粒的电负性大于所述绝缘胶体的电负性。2.根据权利要求1所述的壳体组件,其特征在于,所述绝缘颗粒的绝缘材料包括四氟乙烯和/或四氟乙烯聚合物。3.根据权利要求2所述的壳体组件,其特征在于,所述四氟乙烯聚合物包括聚四氟乙烯、四氟乙烯-六氟丙烯共聚物、全氟丙基全氟乙烯基醚-聚四氟乙烯共聚物中的一种或多种。4.根据权利要求1至3任意一项所述的壳体组件,其特征在于,所述绝缘颗粒与所述绝缘胶体的质量比为30%至60%。5.根据权利要求4所述的壳体组件,其特征在于,所述绝缘颗粒与所述绝缘胶体的质量比为30%、45%、50%、55%或60%。6...

【专利技术属性】
技术研发人员:张桐恺高静孟胤雷奋星
申请(专利权)人:荣耀终端有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1