一种智能弹药识别方法技术

技术编号:38244904 阅读:26 留言:0更新日期:2023-07-25 18:06
本发明专利技术公开了一种智能弹药识别方法,所述方法包括:获取待识别图像;将所述待识别图像输入预设目标识别模型中,得到待识别图像对应的位置信息;根据对应的位置信息计算出检测框,并框出识别目标;其中,所述目标识别模型基于YOLOv5的网络结构训练得到的,所述YOLOv5的网络包括CABlock通道注意力模块,所述CABlock通道注意力模块用于对学习到的特征进行通道方向的整合,本发明专利技术针对YOLOv5在小目标检测领域的缺陷,在原始YOLOv5特征提取后加入了通道注意力模块,用来对学习到的特征进行通道方向的整合以便学习到小目标的边界特征,解决了原有YOLOv5使用的Anchor

【技术实现步骤摘要】
一种智能弹药识别方法


[0001]本专利技术涉及一种智能弹药识别方法,属于目标检测


技术介绍

[0002]目标检测是计算机视觉和数字图像处理的一个热门方向,广泛应用于机器人导航、智能视频监控、工业检测、航空航天等诸多领域,通过计算机视觉减少对人力资本的消耗,具有重要的现实意义。因此,目标检测也就成为了近年来理论和应用的研究热点,它是图像处理和计算机视觉学科的重要分支,也是智能监控系统的核心部分。

技术实现思路

[0003]本专利技术的目的在于提供一种智能弹药识别方法,以解决现有技术yolov5方法在目标检测中识别不准确的缺陷。
[0004]一种智能弹药识别方法,所述方法包括:
[0005]获取待识别图像;
[0006]将所述待识别图像输入预设目标识别模型中,得到待识别图像对应的位置信息;
[0007]根据所述待识别图像对应的位置信息计算出检测框,并框出识别目标;其中,所述目标识别模型基于YOLOv5的网络结构训练得到的,所述YOLOv5的网络包括CABlock通道注意力模块,所述CABl本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种智能弹药识别方法,其特征在于,所述方法包括:获取待识别图像;将所述待识别图像输入预设目标识别模型中,得到待识别图像对应的位置信息;根据所述待识别图像对应的位置信息计算出检测框,并框出识别目标;其中,所述目标识别模型基于YOLOv5的网络结构训练得到的,所述YOLOv5的网络包括CABlock通道注意力模块,所述CABlock通道注意力模块用于对学习到的特征进行通道方向的整合。2.根据权利要求1所述的智能弹药识别方法,其特征在于,所述目标识别模型的训练方法包括:构建初始目标识别模型;获取图像数据集,对所述图像数据集进行标注得到训练集;采用所述训练集对所述初始目标识别模型进行训练,得到所述目标识别模型。3.根据权利要求2所述的智能弹药识别方法,其特征在于,所述获取图像数据集的方法包括:拍摄目标物在不同位置摆放的图像,使用labelme工具,对所拍的图像进行标注,得到图像数据集。4.根据权利要求3所述的智能弹药识别方法,其特征在于,采用旋转目标标注策略对所述图像进行标注,所述标注的文件包括目标物体的位置和类别信息。5.根据权利要求1所述的智能弹药识别方法,其特征在于,所述YOLOv5网络结构还包括Input网络、Backbone主干网络和Neck网络,所述Input网络用于对输入的图像进行Mosaic数据增强,所述Backbone主干网络对输入的图像进行特权提取得到一个特征图,所述Neck网络将提取到的不同尺度的特征图进行特征融合。6.根据权利要求5所述的智能弹药识别方法,其特征在于,所述Neck网络包括PANet和SPP结构,能够将13x13、26x26、52x52三个不同尺度的特征图进行融合。7.根据权利要求1所述的智能弹药识别方法,其特征在于,所述YOLOv5网络结构包括CSPDarknet53网络,所述CSPDarknet53网络中包含了52个卷积层,每层卷积层对输入的特征图进行卷积运算,并输出一个新的特征图。8.根据权利要求1所述的智能弹药识别方法,其特征...

【专利技术属性】
技术研发人员:白志远孙玉宝
申请(专利权)人:南京信息工程大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1