基于卷积神经网络的无人机航拍影像中的船舶检测方法技术

技术编号:38075902 阅读:38 留言:0更新日期:2023-07-06 08:43
本发明专利技术公开了一种基于卷积神经网络的无人机航拍影像中的船舶检测方法,包括以下步骤:步骤1,构建YOLO格式的无人机航拍影像船舶数据集;步骤2,将步骤1中构建的船舶数据集送入改进的YOLOv5s网络进行船舶检测模型训练;步骤3,使用步骤2训练出的模型文件进行船舶目标检测。本发明专利技术采用上述基于卷积神经网络的无人机航拍影像中的船舶检测方法,能够解决现有船舶检测算法精准度不足以及检测速度较慢的问题,让船舶检测具备更高的效率。让船舶检测具备更高的效率。让船舶检测具备更高的效率。

【技术实现步骤摘要】
基于卷积神经网络的无人机航拍影像中的船舶检测方法


[0001]本专利技术涉及计算机视觉
,尤其是涉及一种基于卷积神经网络的无人机航拍影像中的船舶检测方法。

技术介绍

[0002]随着图像处理技术以及无人机技术的快速发展,使用无人机上搭载的高清摄像头对水道船舶进行监控逐渐成为一种有效的船舶检测手段。相比于固定的近岸监控摄像头,无人机具有更高的灵活度以及更广阔的视野,因此单位水域面积的监控成本更低。但无人机影像的背景复杂且在高速运动的过程中可能产生运动模糊,船舶识别的难度更大,且本地计算资源匮乏,无法部署复杂的深度学习模型,因此实现快速、精准的船舶检测就显得尤为重要。
[0003]在早期,船舶检测大多使用传统图像处理技术,即基于人工构建的特征设计船舶检测器,如P. Viola 和 M. Jones VJ提出的VJ检测器、N. Dalal和B.Triggs提出的HOG检测器以及P. Felzenszwalb提出的DPM检测器,这些检测器在面对复杂背景以及图像噪声较大的场景时会经常失效,不具备良好的鲁棒性。
[0004]而基于深度本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种基于卷积神经网络的无人机航拍影像中的船舶检测方法,其特征在于:包括以下步骤:步骤1,构建YOLO格式的无人机航拍影像船舶数据集;步骤2,将步骤1中构建的船舶数据集送入改进的YOLOv5s网络进行船舶检测模型训练;步骤3,使用步骤2训练出的模型文件进行船舶目标检测。2.根据权利要求1所述的基于卷积神经网络的无人机航拍影像中的船舶检测方法,其特征在于:步骤1中,步骤11,使用Python脚本从MS

COCO以及Pascal VOC数据集中提取所有包含船舶实例的图像及对应的标注;步骤12,使用Python脚本对数据集进行清理,去除所有无效的标签及其对应的同名图像,并将所有的标注转换为YOLO格式;步骤13,对数据集进行人工筛选,保留具有无人机视角的船舶图像及其标注文件;步骤14,在数据集中加入采集的无人机航拍船舶图像并以YOLO格式进行标注,将所有的数据以7:1:2划分为训练集、验证集以及测试集。3.根据权利要求1所述的基于卷积神经网络的无人机航拍影像中的船舶检测方法,其特征在于:步骤2中,首先输入图像的分辨率被缩放为640
×
640,然后输入图像依次被改进YOLOv5s的主干网络、颈部网络与头部网络进行处理,最后得到最终的检测结果。4.根据权利要求3所述的基于卷积神经网络的无人机航拍影像中的船舶检测方法,其特征在于:相比于原始的YOL...

【专利技术属性】
技术研发人员:吴绍华程书晓张行健焦健张钦宇
申请(专利权)人:哈尔滨工业大学深圳哈尔滨工业大学深圳科技创新研究院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1