【技术实现步骤摘要】
一种基于神经网络的遥感图像厚云区域检测方法
[0001]本专利技术涉及图像数据处理领域,尤其涉及一种基于神经网络的遥感图像厚云区域检测方法。
技术介绍
[0002]光学遥感图像可以提供对地物信息的丰富观测,然而,云层会对地面信息进行广泛地大面积的遮挡,从而影响对地面信息的估计和观测。因此,对光学遥感图像中的厚云区域覆盖的检测是进一步分析和利用遥感图像信息的基础和关键。
[0003]传统的遥感图像厚云区域检测方法主要基于光谱阈值策略,该策略通过对遥感图像的不同光谱设置阈值,从而实现了对于厚云的自动检测。该策略无需对遥感图像进行像素级的标签标记,也无需进行复杂的模型训练。然而,基于光谱阈值的方法往往泛化性能较差,对于复杂遥感场景的厚云检测精度较差,对于不同类别场景的遥感图像的检测鲁棒性也不足。近年来,卷积神经网络在各种计算机视觉和遥感图像处理任务中都表现出了突出的效果,这也启发了基于卷积神经网络的遥感图像厚云区域检测方法。如中国专利技术专利“一种基于DeepLabV3+的遥感卫星云检测方法”(CN202010241130 ...
【技术保护点】
【技术特征摘要】
1.一种基于神经网络的遥感图像厚云区域检测方法,其特征在于,包括:获取带云遥感图像;根据位置确定分支得到位置特征;根据边缘完善分支得到边缘特征;融合所述位置特征和所述边缘特征得到融合特征;将所述融合特征输入至U型卷积神经网络,得到厚云区域检测结果。2.根据权利要求1所述的一种基于神经网络的遥感图像厚云区域检测方法,其特征在于,所述根据位置确定分支得到位置特征的方法为:将带云遥感图像输入至所述位置确定分支,将输入至所述位置确定分支的带云遥感图像标记为,将依次通过所述压缩模块从而压缩的尺寸,得到,通过所述压缩模块的公式为,;;;;其中,通过第一个压缩模块后的输出;表示通过第二个压缩模块后的输出;表示通过第三个压缩模块后的输出;表示通过第四个压缩模块后的输出;、、和分别表示第一个到第四个压缩模块;将通过所述特征精细模块进行精细得到,与的尺寸相同,通过所述特征精细模块的公式为,;其中,表示特征精细模块的输出;表示经过泄漏整流线性激活单元;表示3
×
3的卷积;叠加和进行特征通道层面的叠加,使得和的特征通道数变为原来的两倍,将和输入至所述重建模块得到所述位置特征,得到所述位置特征的公式为,;;;;其中,表示第一个重建模块的输出;表示第二个重建模块的输出;表示第三个重建模块的输出;
表示位置特征;、、和分别表示第一个到第四个重建模块;表示特征通道层面的叠加操作。3.根据权利要求2所述的一种基于神经网络的遥感图像厚云区域检测方法,其特征在于,所述根据边缘完善分支得到边缘特征的方法为:将带云遥感图像输入至所述边缘完善分支,将输入至所述边缘完善分支的带云遥感图像标记为,所述位置确定分支包含九个特征提取模块,所述特征提取模块的特征相同,9个所述特征提取模块的所述扩张卷积单元的扩张率不同,将依次通过所述依次通过前五个所述特征提取模块,得到和,通过前五个所述提取模块的公式为,;;;;;其中,通过第一个特征提取模块后的输出;表示通过第二个特征提取模块后的输出;表示通过第三个特征提取模块后的输出;表示通过第四个特征提取模块后的输出;表示通过第五个特征提取模块后的输出...
【专利技术属性】
技术研发人员:李冠群,俞伟学,
申请(专利权)人:耕宇牧星北京空间科技有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。