一种实时团伙反欺诈检测方法及系统技术方案

技术编号:37666465 阅读:30 留言:0更新日期:2023-05-26 04:25
本申请公开了一种实时团伙反欺诈检测方法和系统,所述方法包括构建欺诈团伙数据和新进件团伙欺诈检测;所述构建欺诈团伙数据为根据企业数据构建异构图,将异构图转换为带有权重的同构图,基于多种社区发现算法生成团伙数据,根据设定阈值得到最终团伙名单;所述新进件团伙欺诈检测为将新进件信息与最终团伙名单进行匹配,完成欺诈检测。本申请有以下有益效果:在社区发现算法中,基于有权重的边关系生成的社区更加符合实际情况,风险预判更加准确;将多个算法生成的团伙数据进行整合,实现比单个算法获得更好的团伙数据;通过暴力匹配关联,实时判断新进件是否能归类到欺诈团伙中,极大的提升了判断新进件风险的效率。极大的提升了判断新进件风险的效率。极大的提升了判断新进件风险的效率。

【技术实现步骤摘要】
一种实时团伙反欺诈检测方法及系统


[0001]本申请涉及计算机技术、金融风险控制领域,更具体地说,涉及一种实时团伙反欺诈检测方法及系统。

技术介绍

[0002]随着互联网+的蓬勃发展,互联网金融也在飞速的发展,各类金融产品及其衍生品也越来越丰富,服务样式也多种多样。传统的柜台业务及线下营业点也逐渐的变少,各大金融机构都在将业务向线上转移。相较于线下柜台业务而言,线上业务更加开放,获客渠道会大大扩展,但这也同时会面临来自四面八方的各类金融违法犯罪行为带来的风险,且相应的犯罪手段呈现隐蔽化、专业化、组织化、场景化等特征。面对上述问题,监管机构也对各类金融机构提出了更加严格的监管要求,不仅仅是数据、业务方面的合规性要求,同时也要面临复杂多样的操作风险、内外勾结风险、欺诈风险、洗钱风险等风险的巨大挑战。此外,由于金融业务的金融属性,风险发生一次可能就会带来比较大的金额损失,并且现在犯罪活动逐渐向专业化、团伙化等趋势发展,因为只要有一次犯罪行为成功突破风控系统后,其它人都能按照类似的行为取得比较高的攻破率,给相关的金融机构带来成倍数的巨大金额损失。在风控本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种实时团伙反欺诈检测方法,用于金融领域新进件的实时团伙反欺诈检测,所述方法包括构建欺诈团伙数据和新进件团伙欺诈检测;所述构建欺诈团伙数据为根据企业数据构建异构图,将异构图转换为带有权重的同构图,基于多种社区发现算法生成团伙数据,根据设定阈值得到最终团伙名单;所述新进件团伙欺诈检测为将新进件信息与最终团伙名单进行匹配,完成欺诈检测。2.根据权利要求1所述的实时团伙反欺诈检测方法,其特征在于,所述构建欺诈团伙数据包括:步骤A1:获取企业相关数据;步骤A2:根据企业相关数据构建异构图;步骤A3:将异构图转换成同构图;步骤A4:对同构图采用多种社区发现算法获得进件团伙;步骤A5:基于业务贷后指标计算每个团伙的欺诈程度,按照欺诈程度排序,根据设定阈值选取每个社区发现算法产生的前N个进件团伙,得到最终团伙名单。3.根据权利要求2所述的实时团伙反欺诈检测方法,其特征在于,步骤A1所述企业相关数据包括企业的进件信息、行业黑名单数据以及交易相关的IP地址和MAC地址;所述进件信息包括姓名、身份证号、电话、住址、联系人手机号、设备号和GPS信息。4.根据权利要求2所述的实时团伙反欺诈检测方法,其特征在于,所述步骤A3具体包括:首先基于构建的异构图,将每个节点进行映射产生唯一ID;然后获取节点与节点之间的联系形成边,基于步长距离生成带权重的边关系。5.根据权利要求4所述的实时团伙反欺诈检测方法,其特征在于,所述基于步长距离生成带权重的边关系为:边的权重生成基于步长距离的倒数获得,两节点距离越近权重越高,距离越远权重越低。6.根据权利要求2所述的实时团伙反欺诈检测方法,其特征在于,所述社区发现算法包括LPA、Louvain、Fraudar、Infomap和Leiden。7.根据权利要求2所述的实时团伙反欺诈检测方法,其特征在于,所述步骤5包括:分别采用贷后fpd7指标对每个团伙进行加权处理,计算每个团伙对应的黑化程度,按照黑化程度从大到小进行排序,基...

【专利技术属性】
技术研发人员:段志成潘胜男李杰陈峻彪赵冬阳
申请(专利权)人:北京君禾世纪科技有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1