一种基于主动探测的恶意流量防护方法及系统技术方案

技术编号:37394761 阅读:40 留言:0更新日期:2023-04-27 07:32
本发明专利技术涉及一种基于主动探测的恶意流量防护方法及系统,其方法包括:S1:攻击者输入原始流量样本到恶意流量防护模型,在黑盒攻击场景下攻击恶意流量防护模型,输出原始流量样本的标签;S2:构建替代模型,包括:生成器G和鉴别器D;提取原始流量样本的时间序列和长度序列构建具有时空特征流量样本,输入鉴别器D,输出原始流量样本的类别:恶意或良性;S3:对替代模型进行训练,使得生成器G生成对抗样本,鉴别器D识别对抗样本是恶意还是良性;S4:将对抗样本输入恶意流量防护模型,如果输出对抗样本的类别不正确,则重复执行步骤S2~S4,直到防护模型无法识别生成的对抗样本。本发明专利技术提供的方法可有效检测恶意行为,提高防护模型的鲁棒性。提高防护模型的鲁棒性。提高防护模型的鲁棒性。

【技术实现步骤摘要】
一种基于主动探测的恶意流量防护方法及系统


[0001]本专利技术涉及网络安全
,具体涉及一种基于主动探测的恶意流量防护方法及系统。

技术介绍

[0002]恶意流量防护模型是网络管理和网络安全中必不可少的技术。传统的基于规则的检测方法用于识别已知的恶意流量,但它们不适应不断变化的攻击模式。近年来,机器学习尤其是深度学习算法推动了恶意流量检测的发展。通常,会提取网络流量特征,并基于机器学习算法离线训练检测模型。然后将训练好的模型部署用于在线恶意流量检测。基于机器学习的模型可以根据时空流量特征准确识别恶意流量,相对于传统基于规则的检测方法,具有更强的泛化性。
[0003]尽管基于机器学习的模型具有很好的检测能力,但机器学习仍有一些缺点。一些研究人员已经证明,基于机器学习的模型极易受到对抗样本攻击。在计算机视觉中,Szegedy首先提出了对抗样本的概念。他们发现原始图像上的小扰动会误导机器学习系统对图像进行错误分类。近年来,关于对抗样本攻击的研究越来越多,许多学者生成对抗样本来评估机器学习模型,进而提高模型的鲁棒性。攻击者可以通过向恶意样本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种基于主动探测的恶意流量防护方法,其特征在于,包括:步骤S1:攻击者输入原始流量样本到恶意流量防护模型,在黑盒攻击场景下攻击所述恶意流量防护模型,输出所述原始流量样本的标签;步骤S2:构建替代模型,包括:生成器G和鉴别器D;提取所述原始流量样本的时间序列和长度序列构建具有时空特征流量样本,输入所述鉴别器D,输出所述原始流量样本的类别:恶意或良性;步骤S3:对所述替代模型进行训练,使得所述生成器G生成对抗样本,所述鉴别器D识别所述对抗样本是恶意的还是良性的;步骤S4:将所述对抗样本输入所述恶意流量防护模型,如果输出所述对抗样本的类别不正确,则重复执行步骤S2~S4,直到所述恶意流量防护模型无法识别生成的所述对抗样本是恶意的还是良性的,将生成的所述对抗样本与所述原始流量样本混合后,重训练所述恶意流量防护模型。2.根据权利要求1所述的基于主动探测的恶意流量防护方法,其特征在于,所述步骤S2:构建替代模型,包括:生成器G和鉴别器D;提取所述原始流量样本的时间序列和长度序列构建具有时空特征流量样本,输入所述鉴别器D,输出所述原始流量样本的类别:恶意或良性,具体包括:步骤S21:基于所述原始流量样本的时间序列和长度序列作构建具有时空特征流量样本;步骤S22:基于WGAN模型构建替代模型,包括生成器G和鉴别器D;将所述具有时空特征流量样本输入所述鉴别器D,输出为其类别:恶意或良性;同时,构建所述鉴别器D的损失函数L
D
用于训练鉴别器D:其中,表示恶意样本,x表示良性样本,x
mal
表示恶意样本集合,x
ben
表示良性样本集合;D(
·
)表示鉴别器。3.根据权利要求2所述的基于主动探测的恶意流量防护方法,其特征在于,所述步骤S3:对所述替代模型进行训练,使得所述生成器G生成对抗样本,所述鉴别器D识别所述对抗样本是恶意的还是良性的,具体包括:步骤S31:将随机序列seed输入所述生成器G,输出恶意样本,在加...

【专利技术属性】
技术研发人员:成振语桑亚飞孙裴帅
申请(专利权)人:中国科学院信息工程研究所
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1