一种超声扰动Piezo1蛋白质的分子动力学模拟分析方法技术

技术编号:37292200 阅读:14 留言:0更新日期:2023-04-21 03:23
本发明专利技术公开了一种超声扰动Piezo1蛋白质的分子动力学模拟分析方法,属于超声扰动领域。在分子动力学模拟中,通过对边界施加超声函数实现超声扰动,根据X轴的水密度验证超声成功加载;并建立通过细胞膜厚度、脂质蛋白质相互作用多角度阐释超声对细胞膜的影响,进一步研究细胞膜对蛋白质的影响的分析方法,得到超声对Piezo1结构的影响。本发明专利技术首次采用超声波加载粗粒化分子动力学模拟的方法来研究Piezo1机械敏感离子通道的构象变化,对未来超声治疗、声遗传学应用等领域提供重要的研究思路。路。路。

【技术实现步骤摘要】
一种超声扰动Piezo1蛋白质的分子动力学模拟分析方法


[0001]本专利技术属于超声扰动、分子动力学模拟领域,具体涉及一种基于超声扰动的Piezo1蛋白质的分子动力学模拟分析方法。

技术介绍

[0002]机械敏感离子通道蛋白是一类将机械信号转换为生理信号的蛋白质,在人类的生命活动中扮演着十分重要的角色。其中Piezo机械敏感离子通道是迄今为止发现的最大的机械敏感离子通道蛋白,包括Piezo1和Piezo2两个成员。
[0003]Piezo1感受机械力,释放阳离子,诱导细胞激活和信号的传输,参与调解血压等众多生理过程。2018年,Prieto及其同事通过膜片钳技术发现Piezo1对43Mhz和50W/cm2或90W/cm2的连续超声声流引起的细胞膜应力存在激活响应;最近廖等人也发现了激活Piezo1机械敏感离子通道和细胞内钙反应的最佳超声脉冲长度。研究超声扰动下的Piezo1机械敏感离子通道的响应机理,对未来超声治疗以及相关药物设计具有十分重要的意义。
[0004]目前分子动力学模拟在研究细胞内分子机理方面得到了广泛的应用。受限于计算资源,使用全原子分子动力学方法研究对于像Piezo1这样超过7000多个氨基酸的蛋白质体系较为困难。为了在有限计算资源下进行跨越微秒到毫秒时间尺度的分子动力学模拟,探究涉及上百万原子的蛋白质构象变化,采取粗粒化建模更能提高模拟效率。
[0005]文献[De Vecchis D,Beech D J,Kalli A C.Molecular dynamics simulations of Piezo1 channel opening by increases in membrane tension[J].Biophysical Journal,2021,120(8):1510

21.]通过对膜施加横向压力揭示了Piezo1通道可能响应膜张力增加而打开的分子机理;文献[Botello

Smith W M,Jiang W,Zhang H,et al.A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1[J].Nature Communications,2019,10(1):4503.]找到Yoda1结合位点以及提出Yoda1促进力诱导构象改变的分子机制。然而尚未有人使用超声作为机械力通过使用分子动力学模拟方法研究Piezo1。本专利技术首次采用一种超声扰动的分子动力学模拟方法研究Piezo1蛋白构象的变化,通过模拟研究超声波对细胞膜的影响,进一步模拟超声波对Piezo1蛋白质构象的影响。这种超声扰动机械敏感离子通道蛋白的粗粒化分子动力学模拟方法是对现有方法的重要拓展,为声遗传学应用提供重要的研究思路。

技术实现思路

[0006]本专利技术旨在解决模拟超声扰动下的Piezo1蛋白现有技术的问题,提出一种在超声扰动的Piezo1的分子动力学模拟分析方法,具体为使用对细胞膜加载不同频率的超声波,拓展了Piezo1的研究方法。
[0007]鉴于此,本专利技术采用的技术方案如下:一种超声扰动Piezo1蛋白质的分子动力学模拟分析方法,包括以下步骤:
[0008]步骤一,建立超声波模型,并将其耦合到Gromacs软件中;
[0009]步骤二,对蛋白质缺失氨基酸进行补全,并且将其粗粒化后插入到细胞膜中,使用步骤一所述超声模型进行分子动力学模拟分析。
[0010]进一步,所述超声波模型为建立6个大小相同、方向不同的超声波速度,速度产生于立体盒子六个面的边缘,每个面的速度产生有一定的时间间隔;6个超声波速度定义如下:
[0011][0012][0013]V
i
表示分别沿着X、Y、Z正负方向的六个超声波速度,V
max
表示超声脉冲的最大速度,m表示时间步长,N表示分子动力学模拟步长,i作为下标表示六个超声波速度方向中的其中一个,X0表示X坐标,Y0表示Y坐标,Z0分别表示Z坐标。
[0014]进一步,对蛋白质特定缺失小片段区域编写脚本进行缺失氨基酸补全,并使用4对1映射进行粗粒化,将粗粒化后的蛋白质结构嵌入到细胞膜中,构建合适的具有周期性边界的模拟盒子,采用前述超声模型进行超声扰动分子动力学模拟。
[0015]进一步,所述分子动力学模拟分析包括:
[0016]观察分析细胞膜的形态变化,包括膜厚度和膜面积的变化;
[0017]分析膜成分和蛋白质的相互作用时间;
[0018]分析蛋白质构象的变化,在超声扰动下细胞变化引起了膜成分和蛋白质的相互作用进一步引起了导致构象的变化。
[0019]进一步地,所述膜厚度的计算:首先识别细胞膜内外小叶的脂质,通过识别脂质头组密度的峰间距离Z来计算细胞膜厚度随模拟时间的变化。
[0020]进一步地,所述膜面积通过2D Voronoi镶嵌计算,使用Freud的局部模块执行原子位置的镶嵌。
[0021]进一步地,所述膜成分和蛋白质的相互作用时间,通过识别蛋白质和膜成分相互作用位点,计算响应位点的停留时间来判断该位点为强相互作用还是若相互作用。
[0022]脂质(即膜成分)和蛋白质结合位点的计算:同时与同一脂质分子结合的一组残基,pylipid将一个距离向量,记录每个残基与所有脂质分子的距离作为时间的函数,并且构建一个脂质相互作用网络,其节点是蛋白质残基,权重是它们的距离向量计算的残基对的Pearson相关系数。
[0023]相互作用停留时间:由于脂质和蛋白质相互作用,则脂质是不在扩散的。因此pylipid使用双指数计算停留时间来解释脂质松弛的长短衰减,停留时间为(koff表示离解常数)根据使用持续时间的标准化生存函数计算的。
[0024]进一步地,所述蛋白质构象的变化,通过脚本计算Piezo1蛋白质在膜中形成的穹顶深度和绘制蛋白质在xy面的二维密度图来观察Piezo1在超声扰动下的结构变化。
[0025]本专利技术还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如前所述的超声扰动Piezo1蛋白质的分子动力学模拟分析方法。
[0026]本专利技术具有以下优点:
[0027](1)本专利技术首次采用超声扰动粗粒化分子动力学模拟的方法来研究Piezo1机械敏感离子通道,能够观察较长时间内的构象变化;通过分析细胞膜厚度、蛋白质脂质相互作用等多角度阐释超声波对细胞膜的影响,进一步研究细胞膜对Piezo1蛋白的影响。
[0028](2)建立了从整体到局部的分析方法,即通过观察细胞膜的变化,研究细胞膜脂质和蛋白质的相互作用,探讨蛋白质结构变化。
[0029](3)通过计算机模拟超声扰动Piezo1蛋白,可以为电生理实验提供许多实验上难以获得的细节,为未来超声治疗Piezo1相关疾病提供一定的理本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种超声扰动Piezo1蛋白质的分子动力学模拟分析方法,其特征在于,包括以下步骤:步骤一,建立超声波模型,并将其耦合到Gromacs软件中;步骤二,对蛋白质缺失氨基酸进行补全,并且将其粗粒化后插入到细胞膜中,使用步骤一所述超声模型进行分子动力学模拟分析。2.根据权利要求1所述一种超声扰动Piezo1蛋白质的分子动力学模拟分析方法,其特征在于:所述超声波模型为建立6个大小相同、方向不同的超声波速度,速度产生于立体盒子六个面的边缘,每个面的速度产生有一定的时间间隔。3.根据权利要求2所述一种超声扰动Piezo1蛋白质的分子动力学模拟分析方法,其特征在于:所述6个超声波速度定义如下:征在于:所述6个超声波速度定义如下:V
i
表示分别沿着X、Y、Z正负方向的六个超声波速度,V
max
表示超声脉冲的最大速度,m表示时间步长,N表示分子动力学模拟步长,i作为下标表示六个超声波速度方向中的其中一个,X0表示X坐标,Y0表示Y坐标,Z0分别表示Z坐标。4.根据权利要求1所述一种超声扰动Piezo1蛋白质的分子动力学模拟分析方法,其特征在于:所述粗粒化使用4对1映射进行粗粒化。5.根据权利要求1所述一种超声扰动Piezo1蛋白质的分子动力学模拟分析方法,其特征在于:所述分子动力学模拟分析包括观察分析细胞膜的形态变化,包括膜厚度和...

【专利技术属性】
技术研发人员:袁帅杨国莉张文英黄佳铭卢洪周俊鹏
申请(专利权)人:重庆邮电大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1