【技术实现步骤摘要】
用户行为预测方法及装置
[0001]本专利技术涉及数据分析
,尤其涉及一种用户行为预测方法及装置。
技术介绍
[0002]近年来,随着大数据的兴起,消费者行为分析的研究方兴未艾,数据库与数据挖掘、信息系统与信息管理、图像处理与计算机视觉、社会网络分析、电子商务等很多领域的学者加人消费者行为研究的队伍。同时,消费者行为分析这一研究领域也受到了电子商务、社交网络等数字经济形态下的企业的高度关注,消费者行为分析被视为数字经济形态下企业了解其消费者并开展营销活动的有效手段之。
[0003]在聚类分析的实际应用中,针对分类结果的评估也有很多的维度和指标。但是,从数据化运营的实践经验来看,任何模型的数据评估,包括聚类分析的数据评估既要考虑统计学意义上的指标、维度,同时更要关注其实践效果上的价值及业务背景下的价值。尤具聚类项目来说,跟分类(预测)项目的一个显著不同之处在于,分类(预测)项目的评判有训练集、验证集、测试集的客观参照,而对于聚类结果的评判来说,一个对象分配到A类与分配到B类,中间并没有太明确、太客观的参照依据。< ...
【技术保护点】
【技术特征摘要】
1.一种用户行为预测确定方法,其特征在于,所述方法包括:对第一数据集合以及第二数据集合进行聚类分析,以得到优化数据集合,其中,所述第一数据集合以及所述第二数据集合分别对应不同的用户行为,所述优化数据集合包括显性数据以及隐性数据;根据拟合阈值剔除所述优化数据集合中的过拟合数据,以得到第三数据集合,其中,所述拟合阈值是根据所述显性数据以及所述隐性数据确定的;通过预先训练完成的行为转化预测模型,根据所述第三数据集合确定目标用户的用户行为转化率,其中,所述目标用户为所述第二数据集合对应的至少一个用户。2.根据权利要求1所述的方法,其特征在于,所述对第一数据集合以及第二数据集合进行聚类分析,以得到优化数据集合,包括:根据行为数据对所述第一数据集合以及所述第二数据集合进行聚类分析,以得到所述优化数据集合,所述行为数据包括至少一种网络行为特征。3.根据权利要求2所述的方法,其特征在于,所述显性数据对应的网络行为包括以下之一:用户评论、用户评分;所述隐性数据对应的网络行为包括以下之一:点击行为、购买行为以及搜索行为。4.根据权利要求1所述的方法,其特征在于,所述根据拟合阈值剔除所述优化数据集合中的过拟合数据,以得到第三数据集合,包括:通过预先训练完成的拟合值计算模型,根据所述显性数据以及所述隐性数据确定所述拟合阈值;根据所述拟合阈值确定所述过拟合数据;剔除所述优化数据集合中的所述过拟合数据,以得到所述第三数据集合。5.根据权利要求1所述的方法,其特征在于,所述通过预先训练完成的行为转化预测模型,根据所述第三数据集合确定目标用户的用户行为转化率,包括:将所述第三数据集合输入至所述行为转化预测模型,其中,所述行为转化预测模型是根据贝叶斯算法构建的;根据所述第三数据集合中目标用户的行为数据,确定所述用户行为转化率。6.根据权利要求1所述的方法,其特征在于,所述方法还包括:向用户行为转化率大于预设转化率阈...
【专利技术属性】
技术研发人员:槐正,徐冬冬,姜承祥,付迎鑫,崔明,徐锐,王健,魏丫丫,徐蕾,
申请(专利权)人:中国电信股份有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。