一种微弱直流故障电弧检测方法及装置制造方法及图纸

技术编号:36693627 阅读:23 留言:0更新日期:2023-02-27 20:03
本发明专利技术公开一种微弱直流故障电弧检测方法及装置,其中,方法包括:步骤S1,对信号源为光伏系统多联机工况下的直流母线电流与电压信号进行采样,得到含有电弧故障的电压信号与电流信号;步骤S2,对采集到的含有电弧故障的电压信号与电流信号进行小波分解处理,得到小波系数排列熵的特征量;步骤S3,将得到的小波系数排列熵的特征量输入到预设机器学习模型,通过预设机器学习模型检测是否发生了电弧故障,若是则返回步骤S1,否则执行步骤S4;步骤S4,判断检测结果是否达到切断故障电弧的触发标准,若是则判定为故障电弧工况,否则判定为类弧工况。本发明专利技术可以保证微弱直流故障电弧检出的快速性、准确性,避免此类电弧因拒动而引发的电气火灾问题。发的电气火灾问题。发的电气火灾问题。

【技术实现步骤摘要】
一种微弱直流故障电弧检测方法及装置


[0001]本专利技术涉及电力系统
,具体涉及一种微弱直流故障电弧检测方法及装置。

技术介绍

[0002]随着光伏系统的不断扩大,在带来环保型强、高效和可再生的优势之外,大型光伏系统的大面积应用也为安全问题带来了巨大的隐患,在光伏系统直流一侧发生故障电弧是导致火灾的一大原因。瑞士Mont Soleil伏发电站、英国BP公司的光伏组件都曾发生过火灾,而经过调查,两个地方起火的原因都是因为直流故障电弧引起的。在相同的燃烧条件或者相同的实验环境下,与交流故障电弧相比直流故障电弧更加难以熄灭,极易引起火灾事故。关于交流电弧的检测早已开始。常用的检测技术包括小波变换、神经网络等。至今对于交流电弧的特征提取和模式识别技术已经趋于成熟和完善。
[0003]但不同于交流故障电弧的周期性和过零点特征,直流电弧本身的随机性使得故障检测编的困难,加之对于直流电弧故障检测的研究起步较晚,国内外对该问题并没有全面的认识与研究。鉴于光伏系统的广泛应用,使得对于直流故障电弧的故障检测变得尤为重要。
[0004]直流电弧故障的检测方法,一般从时域与频域两方面进行故障电弧的特征提取。Alam MK等人对光伏故障信号从时域角度研究了故障电弧的检测问题,提出了时域反射法。赵尚程等通过小波变换对故障电弧的特征频带进行提取,移动窗口统计小波分解后的高频系数能量值,依次来描述故障电弧的复杂程度。吴春华通过小波变换后小波系数的均方值和能量值作为多种特征值输入到BP神经网络中得到了良好的分析结果。Gu等人利用五层小波对电流进行分解,计算频带的能量的平均值及标准差,加入神经网络中对故障电弧进行检测。
[0005]虽然上述方法综合考虑到了时域与频域的特征,但是所用到的算法较复杂并且需要大量的数据作为训练集,而且也没有解决环境、开关的频率噪声干扰问题,所以如何在不受噪声干扰的条件下快速、准确的检测出故障电弧变得尤为重要。若仍用上述相关手段通过小波系数特征和原始信号排列熵处理多联机运行等工况下的微弱直流电弧故障无法得到有效识别正常与故障的电弧特征值,最终导致检测算法失效。

技术实现思路

[0006]本专利技术所要解决的技术问题在于,提供一种微弱直流故障电弧检测方法及装置,以在多元强耦合噪声干扰条件下快速、准确地检测出故障电弧。
[0007]为解决上述技术问题,本专利技术提供一种微弱直流故障电弧检测方法,包括:
[0008]步骤S1,对信号源为光伏系统多联机工况下的直流母线电流与电压信号进行采样,得到含有电弧故障的电压信号与电流信号;
[0009]步骤S2,对采集到的含有电弧故障的电压信号与电流信号进行小波分解处理,得
到小波系数排列熵的特征量;
[0010]步骤S3,将得到的小波系数排列熵的特征量输入到预设机器学习模型,通过所述预设机器学习模型检测是否发生了电弧故障,若是则返回步骤S1,进行下一时间窗内对信号源的采样,否则执行步骤S4;
[0011]步骤S4,判断检测结果是否达到切断故障电弧的触发标准,若是则判定为故障电弧工况,否则判定为类弧工况。
[0012]进一步地,所述步骤S2中,对所述步骤S1采集到的当前时间窗内含有电弧故障的检测信号进行小波分解处理时,采用的小波基函数为“rbio 3.1”,进行4层分解得到16组小波系数,提取频段范围为93.75kHz~125kHz的小波系数并进行重构。
[0013]进一步地,所述步骤S3中,通过机器学习模型的结果来判断原光伏系统是否发生了电弧故障,输出检测结果为0表示原光伏系统正常运行,则返回至所述步骤S1进行下一时间窗内光伏系统输出电流信号的状态检测。
[0014]进一步地,所述步骤S4具体包括:判断连续输出检测结果为1的周期是否达到切断故障电弧的周期数触发标准,如果达到触发标准,则确定光伏系统内发生了故障电弧,将给相应的脱扣装置发出切断故障电弧支路信号;如果未达到触发标准,则判定并网光伏系统类弧工况形成了不足数量的连续1输出,返回所述步骤S1进行下一时间窗内光伏系统输出电流信号的状态检测。
[0015]进一步地,所述步骤S1的采样频率f=1000kHz。
[0016]本专利技术还提供一种微弱直流故障电弧检测装置,包括:
[0017]采样模块,用于对信号源为光伏系统多联机工况下的直流母线电流与电压信号进行采样,得到含有电弧故障的电压信号与电流信号;
[0018]小波处理模块,用于对采集到的含有电弧故障的电压信号与电流信号进行小波分解处理,得到小波系数排列熵的特征量;
[0019]第一判断模块,用于将得到的小波系数排列熵的特征量输入到预设机器学习模型,通过所述预设机器学习模型检测是否发生了电弧故障,若是则由所述采样模块进行下一时间窗内对信号源的采样;
[0020]第二判断模块,用于在预设机器学习模型输出检测结果为1时,进一步判断检测结果是否达到切断故障电弧的触发标准,若是则判定为故障电弧工况,否则判定为类弧工况。
[0021]进一步地,所述小波处理模块对所述采样模块采集到的当前时间窗内含有电弧故障的检测信号进行小波分解处理时,采用的小波基函数为“rbio 3.1”,进行4层分解得到16组小波系数,提取频段范围为93.75kHz~125kHz的小波系数并进行重构。
[0022]进一步地,所述第一判断模块通过机器学习模型的结果来判断原光伏系统是否发生了电弧故障,输出检测结果为0表示原光伏系统正常运行,则由所述采样模块进行下一时间窗内光伏系统输出电流信号的状态检测。
[0023]进一步地,所述第二判断模块具体用于:判断连续输出检测结果为1的周期是否达到切断故障电弧的周期数触发标准,如果达到触发标准,则确定光伏系统内发生了故障电弧,将给相应的脱扣装置发出切断故障电弧支路信号;如果未达到触发标准,则判定并网光伏系统类弧工况形成了不足数量的连续1输出,返回所述步骤S1进行下一时间窗内光伏系统输出电流信号的状态检测。
[0024]进一步地,所述采样模块的采样频率f=1000kHz。
[0025]实施本专利技术具有如下有益效果:本专利技术提出的排列熵特征结合电流小波分解系数,能够有效提取在环境、设备运行、开关频率等多元强耦合噪声干扰条件下的故障电弧信息,保证微弱直流故障电弧检出的快速性、准确性,避免此类电弧因拒动而引发的电气火灾问题。
附图说明
[0026]为了更清楚地说明本专利技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本专利技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0027]图1是本专利技术实施例一一种微弱直流故障电弧检测方法的流程示意图。
[0028]图2是本专利技术实施例一一种微弱直流故障电弧检测方法的具体流程示意图。
[0029]图3是本专利技术实施例中微弱直流故障电弧的电信号波本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种微弱直流故障电弧检测方法,其特征在于,包括:步骤S1,对信号源为光伏系统多联机工况下的直流母线电流与电压信号进行采样,得到含有电弧故障的电压信号与电流信号;步骤S2,对采集到的含有电弧故障的电压信号与电流信号进行小波分解处理,得到小波系数排列熵的特征量;步骤S3,将得到的小波系数排列熵的特征量输入到预设机器学习模型,通过所述预设机器学习模型检测是否发生了电弧故障,若是则返回步骤S1,进行下一时间窗内对信号源的采样,否则执行步骤S4;步骤S4,判断检测结果是否达到切断故障电弧的触发标准,若是则判定为故障电弧工况,否则判定为类弧工况。2.根据权利要求1所述的方法,其特征在于,所述步骤S2中,对所述步骤S1采集到的当前时间窗内含有电弧故障的检测信号进行小波分解处理时,采用的小波基函数为“rbio 3.1”,进行4层分解得到16组小波系数,提取频段范围为93.75kHz~125kHz的小波系数并进行重构。3.根据权利要求2所述的方法,其特征在于,所述步骤S3中,通过机器学习模型的结果来判断原光伏系统是否发生了电弧故障,输出检测结果为0表示原光伏系统正常运行,则返回至所述步骤S1进行下一时间窗内光伏系统输出电流信号的状态检测。4.根据权利要求1所述的方法,其特征在于,所述步骤S4具体包括:判断连续输出检测结果为1的周期是否达到切断故障电弧的周期数触发标准,如果达到触发标准,则确定光伏系统内发生了故障电弧,将给相应的脱扣装置发出切断故障电弧支路信号;如果未达到触发标准,则判定并网光伏系统类弧工况形成了不足数量的连续1输出,返回所述步骤S1进行下一时间窗内光伏系统输出电流信号的状态检测。5.根据权利要求1

4任一项所述的方法,其特征在于,所述步骤S1的采样频率f=1000kHz。6.一种微弱直流故障电弧检测装置,其特征在...

【专利技术属性】
技术研发人员:王静赵宇明李艳
申请(专利权)人:深圳供电局有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1