【技术实现步骤摘要】
一种基于RBF的纺织品颜色测量方法
[0001]本专利技术涉及一种基于RBF的纺织品颜色测量方法,属于颜色科学与影像技术研究领域。
技术介绍
[0002]纺织业是中国国民经济的传统支柱产业和重要民生产业。染色,配色,拼色等传统工艺水平对于纺织品生产具有重要意义,准确的颜色测量和色差检测对纺织品设计和生产显得尤为重要。许多企业依靠人工目测法,仪器测色法。而采用成像系统作为色度测量装置,采集到的图像可以一定程度的反应纺织品颜色,具有大视场,多采样的特点,是未来颜色测量的发展趋势。
[0003]但是作为颜色测量装置,成像系统在成像过程中受到多方面因素的影响,输出图像很难达到与人眼实际观测相一致的效果,而色度特征化模型可以实现对数字图像设备精准的颜色预测及控制。彩色成像系统色度特征化模型建立设备相关颜色空间与设备无关颜色空间之间的转换关系,可以实现从颜色信息采集到颜色信息输出的颜色一致性。对于图像高保真显示、色度测量、色彩再现、不同设备的色彩管理和色彩外观预测非常重要。常用的色度特征化方法包括查找表法、多项式法和BP神经网络 ...
【技术保护点】
【技术特征摘要】
1.一种基于RBF的纺织品颜色测量的方法,其特征在于,包括以下步骤:S1、选择纺织品实验样本、光源、测量环境、色度测量仪器和需要进行色度特征化的彩色成像系统;S2、采集所述纺织品实验样本的彩色成像系统设备相关空间RGB值和设备无关空间CIE1931XYZ三刺激值,构建数据集;S3、构建RBF神经网络,包括输入层、隐层和输出层,设置所述输入层、隐层、输出层的神经元个数以及径向基函数,建立RBF神经网络模型;S4、基于训练集对所述RBF神经网络模型进行训练,用GA算法优化所述RBF神经网络的隐层节点中心并选取最优的中心点,完成参数优化,构建基于RBF神经网络的纺织品成像系统色度特征化模型;S5、将测试集输入所述色度特征化模型,得到模型预测的XYZ刺激值。2.根据权利要求1所述的一种基于RBF的纺织品颜色测量的方法,其特征在于,所述步骤S1具体包括:S11、选择测试样本,包括丝织物、混纺织物、棉型织物、毛型织物以及各种纺织品样本;S12、选择光源,包括D65光源、D55光源以及各种实际光源,光源应与实际应用环境一致;S13、选择测量环境,成像系统色度特征化环境应与实际应用环境一致;S14、选择色度测量仪器,包括光谱光度计和色度计;S15、选择待测彩色成像系统,包括各种类型的商业数码相机、摄像机、手机以及摄像头。3.根据权利要求1所述的一种基于RBF的纺织品颜色测量的方法,其特征在于,所述步骤S2具体包括:S21、应用所述色度测量仪器垂直对准待测样本,测量CIE1931XYZ三刺激值;S22、调整所述彩色成像系统为手动模式,设置感光度ISO和系统F数,垂直拍摄待测样本,采集设备相关空间RGB值;S23、将RGB三通道响应值作为输入空间,将CIE1931XYZ三刺激值作为输出空间,每个测试样本的RGB值作为属性值,CIE1931XYZ三刺激值作为标记值,实现数据集构建。4.根据权利要求1所述的一种基于RBF的纺织品颜色测量的方法,其特征在于,所述步骤S3具体包括:S31、所述输入层、隐层、输出层神经元个数分别为3、15、3;S32、所述神经元设置范围为10~60,以最小色差为标准,确定最优隐层神经元数;S33、所述隐层为径向基层,使用高斯函数作为径向基函数,所述输出层设置为线性层。5.根据权利要求4所述的一种基于RBF的纺织品颜色测量的方法,其特征在于,所述步骤S33具体包括:所述径向基函数如公式(1)所示,式中,输入向量为P,隐含层基函数的中心为C,基函数围绕中心点的宽度为σ;
逼近模型如公式(2)所示,a2=Wa1+b
ꢀꢀꢀꢀ
(2)式中,隐藏层和输出层之间的权值表示为W;输出层节点的阈值表示为b。6.根据权利要求1所述的一种基于RBF的纺织品颜色测量的方法,其特征在于,所述步骤S4...
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。