一种离网式风光互补耦制绿氢合成氨联产系统技术方案

技术编号:36571059 阅读:27 留言:0更新日期:2023-02-04 17:28
本发明专利技术涉及氢能的技术领域,特别是涉及一种离网式风光互补耦制绿氢合成氨联产系统,针对风电、光伏等可再生能源开发过程中所产生的电量无法实现有效消纳和向外部输送的难题,通过建立具备离网运行能力的风光氢储合成氨一体化制氢制氨系统,将清洁的绿色电力转化为具有更广泛用途的高品质氢气和氨,提高绿色能源开发水平,能够解决复杂场景问题,具有更加普遍的适用性;该系统包括风光互补耦合电力转化系统、电解水系统、空分装置、合成氨系统和化学水处理系统;风光互补耦合电力转化系统为电解水系统、空分装置和化学水处理系统提供电能,电解水系统为合成氨系统提供氢气,化学水处理系统为合成氨系统和电解水系统提供除盐水。系统为合成氨系统和电解水系统提供除盐水。系统为合成氨系统和电解水系统提供除盐水。

【技术实现步骤摘要】
一种离网式风光互补耦制绿氢合成氨联产系统


[0001]本专利技术涉及氢能的
,特别是涉及一种离网式风光互补耦制绿氢合成氨联产系统。

技术介绍

[0002]电解水制氢是一种高效、清洁的制氢技术,产品纯度高(99 .9%),是最有潜力的大规模制氢技术。特别是随着目前可再生能源发电的日益增长,氢气将成为电能存储的理想载体。同时氢气自评为一种用途广泛的化工原料,如合成氨、石油炼化、不饱和烃类的加氢精制过程都要消耗大量的氢。随着社会的发展,工业文明的进步,氨已经成为人类非常重要的一种化工产品。氨作为一种运输方便的储氢燃料,被很多研究单位和能源公司所看好。氨在零下20摄氏度就可以液化,可以方便低成本地运输;另外氨还是一种燃料、肥料和制冷工质,既可以用于燃烧、做为氮肥的基础原料也可以用于制冷行业。
[0003]因此,利用可再生能源电解水制绿氢合成绿氨,绿氢技术与合成氨产业相结合以解决弃风、弃光限电问题具有重要战略意义,也是化工绿色转型的重要途径。
[0004]目前,风光制氢的系统尚不稳定,特别是针对离网型系统,如何构建有效的实现风光可再生能源耦合互补系统制氢是一项前瞻性技术,并认为是解决弃风弃光限电问题的关键技术。基于此,氢储能技术与合成氨产业相结合以解决弃风、弃光限电问题具有重要战略意义。

技术实现思路

[0005]为解决上述技术问题,本专利技术提供一种离网式风光互补耦制绿氢合成氨联产系统,针对风电、光伏等可再生能源开发过程中所产生的电量无法实现有效消纳和向外部输送的难题,通过建立具备离网运行能力的风光氢储合成氨你一体化制氢制氨系统,将清洁的绿色电力转化为具有更广泛用途的高品质氢气和氨,提高绿色能源开发水平,能够解决复杂场景问题,具有更加普遍的适用性。
[0006]本专利技术的一种离网式风光互补耦制绿氢合成氨联产系统,该系统包括风光互补耦合电力转化系统、电解水系统、空分装置、合成氨系统和化学水处理系统;风光互补耦合电力转化系统为电解水系统、空分装置和化学水处理系统提供电能,电解水系统为合成氨系统提供氢气,化学水处理系统为合成氨系统和电解水系统提供除盐水。
[0007]本专利技术作进一步改进,所述风光互补耦合电力转化系统包括光伏发电系统和风力发电系统,光伏发电系统和风力发电系统耦合并联设置。
[0008]本专利技术作进一步改进,还包括电化学储能系统,用于储存风光互补耦合电力转化系统产生的多余的电能,当风光互补耦合电力转化系统产生的电能不足时,为系统补充电能。
[0009]本专利技术作进一步改进,电解水制氢系统通过电解槽装置进行电解水制氢作业,产
生氢气和氧气,氢气连接到氢存储罐进行储备,用于合成氨系统中氢气输入,氧气通过储氧装置进行储存。
[0010]本专利技术作进一步改进,空分装置通过分离作业分离氮气和氧气,氮气通过储氮装置进行储备,用于合成氨系统中氮气输入,氧气通过储氧装置进行储存。
[0011]本专利技术作进一步改进,合成氨系统分为氢氮气压缩、氨合成及冷凝分离、氨压缩冷冻三部分,氮气和氢气按比例混合后经压缩机逐级压缩,采用两级氨冷、二次分氨的工艺完成氨合成及冷凝分离,最后通过氨压缩冷冻将合成氨输出至液氨储罐进行储存。
[0012]本专利技术作进一步改进,化学水处理系统通过超滤、一级反渗透、二级反渗透和EDI电除盐后,完成电解水系统和合成氨系统所需的除盐水制取。
[0013]与现有技术相比本专利技术的有益效果为:通过上述离网型可再生能源电解制氢合成氨系统,可以利用可再生能源发电和储能系统相互耦合相对比较稳定的制备得到的绿氢并进一步合成得到氨气,从而使可再生能源转换为可生产合成氨,有效的提高了风电光伏等可再生能源效率,避免弃风弃光。
附图说明
[0014]图1是本专利技术的结构示意图。
具体实施方式
[0015]下面结合附图和实施例,对本专利技术的具体实施方式作进一步详细描述。以下实施例用于说明本专利技术,但不用来限制本专利技术的范围。
[0016]在本专利技术的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本专利技术中的具体含义。
[0017]如图1所示,本专利技术的一种离网式风光互补耦制绿氢合成氨联产系统,该系统包括风光互补耦合电力转化系统、电解水系统、空分装置、合成氨系统和化学水处理系统;风光互补耦合电力转化系统为电解水系统、空分装置和化学水处理系统提供电能,电解水系统为合成氨系统提供氢气,化学水处理系统为合成氨系统和电解水系统提供除盐水。
[0018]进一步地,所述风光互补耦合电力转化系统包括光伏发电系统和风力发电系统,光伏发电系统和风力发电系统耦合并联设置;光伏发电系统和风力发电系统耦合并联设置,使两种可再生能源发电互补发电的同时避免出现环流,在光伏或风能某一种新能源发电功率存在不稳定的情况下,也能够降低发电系统的输出波动。
[0019]进一步地,还包括电化学储能系统,用于储存风光互补耦合电力转化系统产生的多余的电能,当风光互补耦合电力转化系统产生的电能不足时,为系统补充电能;电化学储能系统主要为风光互补发电时储存多余的电能,在风光发电不足时释放电能,满足整个系统较低负荷运行下的电力需求,目的在于保证整个系统的安全停开机和
电能储荷,从而保证稳定供能以满足电解制氢功率和化学水处理系统及空分装置安全运行。
[0020]进一步地,电解水制氢系统通过电解槽装置进行电解水制氢作业,产生氢气和氧气,氢气通过超低温液化装置或高压气体压缩装置连接到氢存储罐进行储备,用于合成氨系统中氢气输入,氧气通过储氧装置进行储存。
[0021]进一步地,空分装置通过分离作业分离氮气和氧气,氮气通过储氮装置进行储备,用于合成氨系统中氮气输入,氧气通过储氧装置进行储存。
[0022]进一步地,合成氨系统分为氢氮气压缩、氨合成及冷凝分离、氨压缩冷冻三部分,氮气和氢气按照1:3比例混合后经压缩机逐级压缩,采用两级氨冷、二次分氨的工艺完成氨合成及冷凝分离,最后通过氨压缩冷冻将合成氨输出至液氨储罐进行储存。
[0023]进一步地,化学水处理系统通过超滤、一级反渗透、二级反渗透和EDI电除盐后,完成电解水系统和合成氨系统所需的除盐水制取;空分装置冷却水补充水源可作为化学水处理系统的一部分水源,除盐水通过储水单元存储,再由补水泵输送至电解水单元和合成氨系统,实现满足电解水制氢系统和合成氨系统的用水需求;同时化学水处理系统产生的一级反渗透出水作为空分装置的冷却水。
[0024]实施例:如图1所示,本专利技术是以光伏发电、风力发电提供的可再生电源作为动力,配有恰当的储能装置,通过电解水制氢装置生产绿色的氢气、氧气,空分装置产生氮气和氧气,化学水处理制备除盐水,氢气和氮气经送下游合成氨工艺装置最终合成氨,本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种离网式风光互补耦制绿氢合成氨联产系统,其特征在于,该系统包括风光互补耦合电力转化系统、电解水系统、空分装置、合成氨系统和化学水处理系统;风光互补耦合电力转化系统为电解水系统、空分装置和化学水处理系统提供电能,电解水系统为合成氨系统提供氢气,化学水处理系统为合成氨系统和电解水系统提供除盐水。2.如权利要求1所述的一种离网式风光互补耦制绿氢合成氨联产系统,其特征在于,所述风光互补耦合电力转化系统包括光伏发电系统和风力发电系统,光伏发电系统和风力发电系统耦合并联设置。3.如权利要求2所述的一种离网式风光互补耦制绿氢合成氨联产系统,其特征在于,还包括电化学储能系统,用于储存风光互补耦合电力转化系统产生的多余的电能,当风光互补耦合电力转化系统产生的电能不足时,为系统补充电能。4.如权利要求3所述的一种离网式风光互补耦制绿氢合成氨联产系统,其特征在于,电解水制氢系统通过电解槽装...

【专利技术属性】
技术研发人员:王光春李伟周祖旭朱青毛恒山夏柳王宁朱晓林
申请(专利权)人:中电建新能源集团有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1