一种量子纠缠源的补偿装置制造方法及图纸

技术编号:35728473 阅读:14 留言:0更新日期:2022-11-26 18:27
本发明专利技术适用于量子物理技术领域,尤其涉及一种量子纠缠源的补偿装置。补偿装置包括双折射晶体;双折射晶体的一端用于连接波导模块的输出端,以对波导模块输出的关联的光子对进行色散补偿,并且对补偿后的光子对进行干涉,形成纠缠态经过双折射晶体的另一端输出;双折射晶体的长度根据第二PPLN波导的长度,结合经过第二PPLN波导后参量光的双光子态总相位与经过补偿晶体后引入参量光的双光子态总相位相等的原理计算得到。本发明专利技术大大的增加了单路双波导纠缠源的对比度和亮度,同时本发明专利技术采用一个双折射晶体实现了补偿,减小了补偿装置的体积,使得补偿装置可以集成化设置,提高了纠缠源的稳定性。源的稳定性。源的稳定性。

【技术实现步骤摘要】
一种量子纠缠源的补偿装置


[0001]本专利技术适用于量子物理
,尤其涉及一种量子纠缠源的补偿装置。

技术介绍

[0002]量子密钥分发通过量子态的传输,是目前人类唯一已知的不可窃听、不可破译的无条件安全的通信方式。在量子密钥分发信道传输衰减是单链路的平方,在最终码率的提高方面存在制约,而提高纠缠源亮度是提高最终码率最直接的手段之一。
[0003]随着微加工技术的引入,铌酸锂已经成为量子集成光学的重要平台,能够实现多种自由度编码的单片集成的纠缠光源,进而周期性极化铌酸锂(PPLN)波导是解决量子信息领域纠缠源难题的最佳选择。
[0004]目前常用的PPLN波导纠缠源是双路的,例如:授权公告号为CN 209182627 U的中国技术专利文件,该专利文件公开了一种基于双PPLN波导的纠缠源,包括光源、偏振分束单元、偏振控制单元、两个PPLN波导及纠缠光子产生单元。偏振分束单元将泵浦光分成偏振方向彼此垂直的两个泵浦光分量。偏振控制单元使泵浦光分量之一在进入PPLN波导之前偏振方向发生90度旋转。两个PPLN波导用于在泵浦光分量作用下基于参量下转换效应产生关联的第一和第二光子对。纠缠光子产生单元同时接收两个光子对且由此输出两路偏振纠缠态的光子对,并且该纠缠源实现了全光纤结构,减小了纠缠源的集成体积,被广泛使用。
[0005]然而,上述PPLN波导纠缠源基于双路设置的原因,对波导一致性要求较高,对于极化周期较小的PPLN波导不适用,导致纠缠效果差的问题。为此有人提出采用如申请号为202210991148.0的单路双波导纠缠源,但是对于这种单路双波导纠缠源在前一个波导上完成下转换的参量光经过后一个波导时引入的色散,大大降低纠缠源对比度和亮度,采用传统的补偿方式(改变两波导长度或采用调节泵浦光的相位的方法)效果并不明显,或者采用两个非线性晶体和两个自由空间补偿晶体实现了纠缠源补偿,但是使用尺寸较大的自由空间补偿晶体,整个纠缠源系统较大,稳定性较差。
[0006]为此,需要提出一种适用于单路双波导纠缠源的补偿方案。

技术实现思路

[0007]有鉴于此,本专利技术实施例提供了一种量子纠缠源的补偿装置,以解决现有的补偿方案对单路双波导纠缠源适用性差的问题。
[0008]本申请提供一种量子纠缠源的补偿装置,包括补偿晶体,所述补偿晶体为双折射晶体;双折射晶体的一端用于连接波导模块的输出端,以对波导模块输出的关联的光子对进行色散补偿,并且对补偿后的光子对进行干涉,形成纠缠态经过双折射晶体的另一端输出;所述波导模块包括相互垂直且耦合连接的第一PPLN波导和第二PPLN波导,第一PPLN波导用于接收泵浦光源,第二PPLN波导输出关联的光子对;所述相互垂直包括第一PPLN波导的Y轴和第二PPLN波导的Y轴平行,第一PPLN波导的Y轴和第二PPLN波导的Y轴为光
的传输方向,第一PPLN波导的X轴和第二PPLN波导的Z轴平行,第一PPLN波导的Z轴和第二PPLN波导的X轴平行;所述双折射晶体的长度根据第二PPLN波导的长度,结合经过第二PPLN波导后参量光的双光子态总相位与经过补偿晶体后引入参量光的双光子态总相位相等的原理计算得到。
[0009]本专利技术的量子纠缠源的补偿装置与现有技术相比存在的有益效果是:单路双波导纠缠源中,色散主要是在第一PPLN波导完成下转换的参量光经过第二PPLN波导时引入的,因此基于第二PPLN波导的长度,结合经过第二PPLN波导后参量光的双光子态总相位与经过补偿晶体后引入参量光的双光子态总相位相等的原理可以准确的确定补偿晶体的长度,进而更好的对色散进行补偿,大大的增加了纠缠源的对比度和亮度,同时本专利技术采用一个双折射晶体实现了补偿,减小了补偿装置的体积,使得补偿装置可以集成化设置,提高了纠缠源的稳定性。
[0010]进一步地,双折射晶体的长度的计算过程为:;其中,为双折射晶体的长度;为signal光子的波长;为idle光子的波长;为signal光子在双折射晶体o方向的折射率;为idle光子在双折射晶体o方向的折射率;为signal光子在双折射晶体e方向的折射率;为idle光子在双折射晶体e方向的折射率;为泵浦光相位;为第二PPLN波导的长度;为signal光子在第二PPLN波导传输方向的折射率;为idle光子在第二PPLN波导传输方向的折射率。
[0011]进一步地,所述补偿装置还包括设置在波导模块和补偿晶体之间的第一准直装置,用于对波导模块发出的光进行准直。
[0012]进一步地,第一准直装置为GRIN lens镜。
[0013]进一步地,第一准直装置在光的传输方向的两端设有增透膜。
[0014]进一步地,所述补偿装置还包括第二准直装置,第二准直装置设置在沿光的传输方向的补偿晶体的后端,用于对补偿晶体发出的发散光进行准直。
[0015]进一步地,所述补偿装置还包括滤波装置,滤波装置设置在沿光的传输方向的补偿晶体的后端,用于对补偿晶体发出的发散光进行滤波。
[0016]进一步地,所述补偿装置还包括滤波装置和第二准直装置,滤波装置和第二准直装置设置在沿光的传输方向的补偿晶体的后端,且滤波装置处于第二准直装置的前端,用于对补偿晶体发出的发散光进行滤波和准直。
[0017]进一步地,所述双折射晶体为YVO4晶体。
[0018]进一步地,双折射晶体在光的传输方向的两端设有增透膜。
附图说明
[0019]为了更清楚地说明本专利技术实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本专利技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
[0020]图1是本专利技术量子纠缠源的结构框图;图2是本专利技术补偿装置;图3是本专利技术量子纠缠源补偿前的色散图;图4是本专利技术量子纠缠源补偿后的色散图;图中,1为泵浦光源、2为水平放置PPLN波导、3为竖直放置PPLN波导、4为补偿装置、5为耦合装置、6为壳体、7为基板、8为TEC驱动模块、9为波导模块、10为基底、41为第一准直装置、42为补偿晶体、43为滤波装置、44为第二准直装置。
具体实施方式
[0021]以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本专利技术实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本专利技术。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本专利技术的描述。
[0022]应当理解,当在本专利技术说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
[0023]还应当理解,在本专利技术说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种量子纠缠源的补偿装置,包括补偿晶体,其特征在于,所述补偿晶体为双折射晶体;双折射晶体的一端用于连接波导模块的输出端,以对波导模块输出的关联的光子对进行色散补偿,并且对补偿后的光子对进行干涉,形成纠缠态经过双折射晶体的另一端输出;所述波导模块包括相互垂直且耦合连接的第一PPLN波导和第二PPLN波导,第一PPLN波导用于接收泵浦光源,第二PPLN波导输出关联的光子对;所述相互垂直包括第一PPLN波导的Y轴和第二PPLN波导的Y轴平行,第一PPLN波导的Y轴和第二PPLN波导的Y轴为光的传输方向,第一PPLN波导的X轴和第二PPLN波导的Z轴平行,第一PPLN波导的Z轴和第二PPLN波导的X轴平行;所述双折射晶体的长度根据第二PPLN波导的长度,结合经过第二PPLN波导后参量光的双光子态总相位与经过补偿晶体后引入参量光的双光子态总相位相等的原理计算得到。2.根据权利要求1所述的量子纠缠源的补偿装置,其特征在于,双折射晶体的长度的计算过程为:;其中,为双折射晶体的长度;为signal光子的波长;为idle光子的波长;为signal光子在双折射晶体o方向的折射率;为idle光子在双折射晶体o方向的折射率;为signal光子在双折射晶体e方向的折射率;为idle光子在双折射晶体e方向的折射率;为泵浦光相位;为第二PPLN波导的长度;为signal光子在第二PPLN波导传输方向的折射率;...

【专利技术属性】
技术研发人员:高洋杨志远陶艺张永康马文博郑名扬刘洋谢秀平张强
申请(专利权)人:济南量子技术研究院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1