JPG图像数据实体的2s倍超分辨率模型及还原方法技术

技术编号:34042653 阅读:26 留言:0更新日期:2022-07-06 13:51
本发明专利技术提供JPG图像数据实体的2s倍超分辨率模型,包括,具有执行以下功能的计算机程序:图像噪声处理;高精准度恢复;图像高感知度恢复。有益效果在于:关注于如何处理现实中的JPG图像数据,通过结合特定的需求,设置效果满意的超分辨率模型。通过高精度、高感知度超分辨率模型的迭代、结合,消除JPG图像存在的噪声干扰,进一步产生满足实际需要的超分辨率图像。设备获取高分辨率图像只能针对新的图像数据,对于已有的,尤其是很久之前的照片,新设备是无法处理的。另外,高清图像设备的价格往往都极其昂贵,对很多使用单位,其使用成本过高。本方法从模型的角度出发,可以很好地解决这个问题。题。题。

2S times super-resolution model and restoration method of JPG image data entity

【技术实现步骤摘要】
JPG图像数据实体的2s倍超分辨率模型及还原方法


[0001]本专利技术涉及数据的超分辨率还原
,涉及JPG类型图像数据实体的超分辨率还原模型,具体涉及一种JPG图像数据实体的2S倍超分辨率模型及还原方法。

技术介绍

[0002]人工智能已经成为当前社会发展的最热点。目前,智能技术的发展主要集中在非结构化数据相关的图像任务和自然语言处理。知识图谱可以为多种不同数据提供统一的平台,进一步为涉及到多种不同数据数据类型的智能任务提供数据分析基础。
[0003]图像数据是知识图谱涉及的重要数据,由于其非结构的数据特性,如何处理图像数据是知识图谱的重要任务之一。
[0004]对图像而言,像素是各种任务和需求的基本要素,有限的像素值会约束图像的进一步处理空间。本专利技术的目的是为了解决有限条件下高像素图片的获取问题,进一步为其他决策任务或者应用目的服务。基于高精准度和高感知度两个不同的目的,设置不同的神经网络模型。通过模型的相互组合匹配,可以为不同的目的匹配出最适合的高像素值图像。通过本专利技术的模型,可以在需求和有限的硬件条件获得较本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.JPG图像数据实体的2s倍超分辨率模型,其特征在于,包括,具有执行以下功能的计算机程序:图像噪声处理;高精准度恢复;图像高感知度恢复。2.根据权利要求1所述的JPG图像数据实体的2s倍超分辨率模型,其特征在于,采用轻量化的卷积神经网络(CNN)训练并恢复JPG图像数据实体的压缩信息。3.根据权利要求2所述的JPG图像数据实体的2s倍超分辨率模型,其特征在于,所述JPG图像数据实体的压缩信息为无损的1倍(1X)图像通过JPG压缩得到的输入图像;输入的图像经过多层的卷积神经网络,信息得到充分的学习和提取,得到了压缩信息部分恢复的去噪图像(1X);其中,损失函数设定为JPG压缩图像和无损的1X图像的L1范数:4.根据权利要求1

3之任一项权利要求所述的JPG图像数据实体的2s倍超分辨率模型,其特征在于,高精准度恢复过程包括:输入的压缩JPG图像经过了第一阶段的区噪处理,得到了满足使用要求的原始尺寸图像,输出的数据作为第二阶段的输入数据,进行下一步的超分操作。5.根据权利要求4所述的JPG图像数据实体的2s倍超分辨率模型,其特征在于,超分操作过程包括:a,第一阶段的输出Lrec(I

【专利技术属性】
技术研发人员:李彪石勇寇纲张影飞彭怡
申请(专利权)人:西南财经大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1