一种自适应加权半监督概率CPLS的质量相关监测方法技术

技术编号:33991786 阅读:41 留言:0更新日期:2022-07-02 09:52
本发明专利技术涉及一种自适应加权半监督概率CPLS的质量相关软测量方法,并用于工业过程监测。该方法包含数据预处理,模型隐变量以及模型参数初始化,计算未标记过程数据样本的权重、隐变量的协方差矩阵、故障监测统计量的控制限、质量数据的监测统计量、过程数据的监测统计量以及根据上述计算结果比较监测统计量与控制限进行判断是否发生故障等步骤。本发明专利技术为解决变速率数据建模问题提供了一个可行的途径,易于推广到即时学习以及连续流程和间歇过程的故障监测中,较好提高软测量模型精度以及故障监测性能。及故障监测性能。及故障监测性能。

【技术实现步骤摘要】
一种自适应加权半监督概率CPLS的质量相关监测方法


[0001]本专利技术属于工业过程监测
,具体涉及一种自适应加权半监督概率CPLS的质量相关监测方法。

技术介绍

[0002]面向流程工业过程的数据驱动建模方法必须要考虑数据的高维特性、信息的隐藏特性以及噪声复杂等特性。而在过去的20多年里,数据驱动建模方法已经在理论研究和实际应用方面取得很大进展。多变量统计过程监控(multivariate statistical process control, MPSC)方法被广泛应用于流程工业过程的监测与故障诊断,如主元分析(PCA)、偏最小二乘(PLS)、慢特征分析(SFA)、线性鉴别分析(LDA)以及独立成分分析(ICA)方法等。MSPC方法通过降维投影方法提取过程数据的信息,构建有效的故障监测统计量。近年来,过程关键质量指标的数据驱动的回归建模方法已经成功用于过程产品质量关键性能估计以及故障监测,不仅节省大量人力物力,提高质量敏感故障的监测。而且,典型的回归建模方法主要有PLS、人工神经网络以及支持向量回归方法等。偏最小二乘(Partial leastsquare,PLS)是一种基于数据驱动可以处理多个因变量对多个自变量的回归建模方法,因其具有提取质量相关信息的特性,在质量相关复杂工业过程监控中得到广泛的应用,成为近几十年复杂工业过程故障检测和诊断领域的研究热点[参考文献1

5]。
[0003]在流程工业实际运行中往往受到多种不确定因素的影响,使得过程观测变量具有很强的随机性。因此,采用概率模型描述的过程数据以及监测模型更易于解释。概率建模方法具有易于处理过程数据中缺失的隐变量问题、伸缩性较好的优点,有利于解决大规模数据维数过高以及不确定数据建模问题[参考文献6

9]。另外,还可以利用变分Bayesian推理方法可以自动确定概率模型参数,避免过拟合问题,更好利用过程数据隐含信息。目前,基于数据驱动的概率建模方法主要有(混合)概率主元分析((mixture)probabilisticprincipal component analysis,PPCA),(混合)概率偏最小二乘 (probabilistic partial least squares,(M)PPLS),概率线性子空间状态模型(probabilistic linear state space,PLSS)、 Dirichlet过程高斯混合模型(Dirichlet process Gaussianmixture model,DPGMM),概率Fisher鉴别分析(probabilisticFisher discriminant analysis,PFDA),变分自编码模型 (variational autoencoder,VAE)等。理论分析和仿真结果表明概率建模方法能够有效解决样本不确定性和样本数量不充足问题,在软测量建模和流程工业监测中取得较为理想的效果。
[0004]为克服PLS的缺点,Zhou D(2010)基于不同类型信息属于不同子空间的思想,提出用于过程监测的全潜结构投影(totalprojection to latent space,T

PLS)算法[参考文献10],以实现不同类型信息的准确监测。T

PLS把输入X划分为与输出Y相关的子空间X
y
和与输出正交的子空间X
o
,其余部分再进一步划分为含有较大变异子空间X
r
和残差子空间E
r
。输出Y分为与子空间X
y
相关的预测以及预测误差。很显然,该模型可以实现质量相关的故障预测或者软测量建模。实际中,无关过程变量对PLS模型预测精度的影响,提高过程质量变
量对过程变量解释能力以及监测性能。zhao C 2013 把T

PLS推广到多空间,并构建了多个过程统计量[参考文献11]。尽管T

PLS具有解释过程变量能力以及多监测统计量提高过程监测精度能力,然而,该模型无法对不可预测质量变化进行监测,输入空间划分过多子空间反而不利于监测精度提高。针对上述问题,Qin S J(2013)提出了并发潜结构投影(concurrent projection tolatent structures,CPLS)模型[参考文献2]。该模型把输出空间分为可预测子空间、不可预测子空间以及残差子空间,同样输入空间划分为预测相关子空间、过程变量变化子空间以及残差空间。 CPLS将过程变量和质量变量同时投影到五个子空间:联合输入输出的协方差子空间、输出主子空间、输出残差子空间、输入主子空间和输入残差子空间,更好解释故障对。CPLS只是从全局监控的角度对过程变量和质量变量进行了进一步分解,没有利用样本集的局部空间信息和动态信息,忽视了数据不确定性对模型精度的影响。
[0005]另外,在工业过程质量预报、质量相关过程监测建模过程中,一般质量数据往往比未标记数据稀少,而且其质量数据获取往往需要花费人力和物力才能得到,不仅其周期也比未标记数据周期大得多,而且质量数据样本数量也十分稀少[参考文献12]。图1表示质量数据和未标记数据的关系。在图1中,质量数据采集周期为N'T
s
,其中T
s
为数据采样周期,在实际工业过程中,一般质量数据往往比未标记数据稀少,而且其质量数据获取往往需要花费人力和物力才能得到,不仅其周期也比未标记数据周期大得多,而且质量数据样本数量也十分稀少。在质量预测建模过程中,考虑到质量数据的稀缺性,人们期望对质量数据尽可能拟合准确。一般说来,过程数据具有较为明显的动态性和局部性,不仅需要考虑质量数据与其前面过程数据之间的动态相关性,还需要考虑质量数据与前面过程数据在空间上的相似性[参考文献1,13

17]。其原因是,样本空间上质量样本与每个历史样本之间的距离,其假设样本之间空间距离越小表示其相关性越大,样本权重适合过程突变建模。然而空间距离小的历史样本可能在时间轴上会远离当前运行状态的查询样本,因此具有较大权重的历史样本并不能表示最新过程状态,忽视了样本的趋势和样本时间序列的动态关系。另外,对一些波动较小的工业过程,相邻样本具有很强的时间关系,使用过去相邻样本预测询问样本应该具有更高的重要性,因此样本之间的时间距离能够很好地考虑相邻样本关系。综合以上所述,简单使用空间距离或者时间距离均无法同时描述过程的突变与缓变性质、系统的动态性,只有综合使用时间权重和空间权重的加权能够解决上述问题。
[0006]基于上述考虑,本专利技术提出了一种自适应加权半监督概率并发潜结构投影的质量相关测量方法(Adaptive weightedsemi

supervised concurrent projection to latent space, AWS

CPLS)。

技术实现思路

[0007]本专利技术的目的在于:针对上述现有技术存本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种自适应加权半监督概率CPLS的质量相关监测方法,其特征在于,包括以下步骤:S1、数据预处理—从工业过程平稳工况采集数据集和质量指标数据集然后对质量数据和输入数据进行规格化预处理;S2、模型隐变量以及模型参数初始化—采用规格化输入数据和输出数据建立概率偏最小二乘PPLS模型并确定模型共有隐变量t
c
维度q
c
以及相应的稀疏矩阵作为矩阵P和C初始值;然后由PPLS模型对输入数据和数据进行重构,计算输出和输入数据重构误差对ex
n'
、ey
n'
,分别对数据集使用PCA计算方差贡献率的85%确定输入空间私有隐变量t
x
维度q
x
、输出空间私有隐变量t
y
维度q
y
,其相应的负荷矩阵分别作为矩阵Q和D的初始值,其重构误差协方差矩阵作为Σ
x
和Σ
y
的初始值;S3、设置迭代步数为t,期望最大化EM算法停止阈值ε=10
‑5,设定算法运行的最大迭代次数Maxiter,设置控制限的置信度c,算法迭代步数初始值为0,即t=0;S4、计算未标记过程数据样本的权重;S5、将迭代步数加1,并采用EM算法的E

步计算隐变量的期望,M

步更新模型参数,直至算法达到算法停止阈值或迭代次数达到最大迭代次数;S6、计算隐变量的协方差矩阵;S7、计算测统计量的控制限;S8、计算质量数据的监测统计量;S9、计算过程数据的监测统计量;S10、判断步骤S8和S9所计算的各个监测统计量是否满足和SPE≤SPE
lim
,如果没有满足则判断过程发生异常,进而获得异常变量所在的空间。2.根据权利要求1所述一种自适应加权半监督概率CPLS的质量相关监测方法,其特征在于,所述步骤S1中,采用式(39)和(40)对质量数据和输入数据进行规格化预处理,采用式(39)和(40)对质量数据和输入数据进行规格化预处理,式中,x
n'
为x
n
规格化处理后的数据,mean(X)为输入空间的所有训练数据的平均值,std(X)为输入空间的所有训练数据的标准差,y
m'
为y
m
规格化处理后的数据,mean(Y')为输出空间的所有训练数据的平均值,std(Y')为输出空间的所有训练数据的标准差。3.根据权利要求2所述一种自适应加权半监督概率CPLS的质量相关监测方法,其特征在于,所述步骤S2中,模型中过程输入数据和质量输出数据的均值μ
x
和μ
y
的初始值均为0。4.根据权利要求3所述一种自适应加权半监督概率CPLS的质量相关监测方法,其特征在于,所述步骤S4中,假设标记样本采样周期采集周期为N'T
s
,未标记数据采样周期为T
s
,设有N'

1个未标记样本x
n(N'

1)
,x
n(N'

2)
,

,x
N'(n

1)+1
,并将质量样本记为(x
nN'
,y
nN'
),根据式(5)和(6)计算未标记数据样本的空间权重和时间权重,
式中,为未标记数据样本的空间权重,上标T为向量或矩阵的转置,σ
s
为可调参数,用于控制空间权重随着欧式距离变化速率,为未标记数据样本的时间权重,σ
t
为可调参数,用于控制时间权重随着未标记样本时间与距离质量样本时间变化衰减速率,i=1,2,

,N'

1,n=1,2,

,N
L
;然后,根据质量数据样本由式(7)计算未标记数据样本的最终权重式中,w
nN'

i
为未标记数据样本的最终权重,λ
nN'
为加权系数且||y
nN'

y
(n

1)N'
||表示y
nN'
与y
(n

1)N'
之间的欧氏距离,且y
(n

1)N'
为第n

1个样本输出,其采样点位置为(n

1)N',y
nN'
表示第n个样本输出,σ
w
为可调参数,用于控制加权系数随着相邻质量数据变化的速率。5.根据权利要求4所述一种自适应加权半监督概率CPLS的质量相关监测方法,其特征在...

【专利技术属性】
技术研发人员:任世锦陈琳任珈仪林睦良魏明生
申请(专利权)人:江苏师范大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1