【技术实现步骤摘要】
一种无症状性冠脉疾病的预测模型训练方法、装置及系统
[0001]本专利技术涉及无症状性冠脉疾病的预测模型训练领域,涉及一种无症状性冠脉疾病的预测模型训练方法、装置及系统。
技术介绍
[0002]冠状动脉疾病(CAD)是由于冠状动脉粥样硬化斑块形成而导致血流减少、远端心肌缺血的一类疾病。它是全球成年人的主要致死原因,是人类预期寿命缩短、生活质量减低的重要原因,为全球医疗和经济带来了沉重的负担。其中,无症状型冠脉疾病,包括无症状心肌缺血,是冠状动脉疾病(CAD)的常见类型,但由于缺乏典型的临床症状和特异性标志,常常被漏诊;因此,对存在无症状型冠脉疾病个体的筛查、识别和诊断是亟待解决的重要问题。
[0003]在现有技术中,通常使用传统的12导联心电图(ECG)进行检查,ECG是一种临床常用的、低成本、非侵入性心脏电生理检查手段,动态心电监测也被临床广泛运用,作为高危人群筛查的重要方法;在此基础上,现有技术还采用基于ECG的预测模型对无症状性冠脉疾病进行预测。
[0004]但是,现有技术仍存在如下缺陷:传统心电图和动 ...
【技术保护点】
【技术特征摘要】
1.一种无症状性冠脉疾病的预测模型训练方法,其特征在于,所述预测模型训练方法包括:获取训练数据组,并对所述训练数据组进行预处理,从而获得第一训练数据组;所述第一训练数据组包括第一训练集、第一验证集以及第一测试集;根据预设的ResNet
‑
50架构以及预设的Squeeze
‑
and
‑
Excitation模块,构建预测模型;根据所述第一训练集、所述第一验证集、所述第一测试集以及所述预测模型,训练评估以获得第一预测模型。2.根据权利要求1所述的无症状性冠脉疾病的预测模型训练方法,其特征在于,获取训练数据组,并对所述训练数据组进行预处理,从而获得第一训练数据组,具体包括:收集预设的数量的训练数据组;所述训练数据组包括心电图以及血管造影图像;根据预设的冠脉狭窄判断标准,对所述血管造影图像进行判断和标记以获得第一血管造影图像,对所述心电图进行缩减处理以获得第一心电图,并将第一血管造影图像以及第一心电图作为第一训练数据组;根据预设的划分比例,将所述第一训练数据组划分为第一训练集、第一验证集以及第一测试集。3.根据权利要求2所述的无症状性冠脉疾病的预测模型训练方法,其特征在于,根据预设的ResNet
‑
50架构以及预设的Squeeze
‑
and
‑
Excitation模块,构建预测模型,具体包括:将预设的Squeeze
‑
and
‑
Excitation模块嵌入预设的ResNet
‑
50架构中,从而获得预测模型。4.根据权利要求3所述的无症状性冠脉疾病的预测模型训练方法,其特征在于,根据所述第一训练集、所述第一验证集、所述第一测试集以及所述预测模型,训练评估以获得第一预测模型,具体包括:通过所述第一训练集以及所述第一验证集对所述预测模型进行训练,从而获得训练预测模型;通过所述第一测试集对所述训练预测模型进行评估测试,并根据评估结果输出第一预测模型。5.一种无症状性冠脉疾病的预测模型训练装置,其特征在于,所述预测模型训练装置还包括数...
【专利技术属性】
技术研发人员:杨淞然,华平,王琦,唐攀力,
申请(专利权)人:中山大学孙逸仙纪念医院,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。