一种超低铂载量的膜三合一制备方法技术

技术编号:3253660 阅读:199 留言:0更新日期:2012-04-11 18:40
本发明专利技术公开一种超低Pt载量的膜三合一制备方法,它包括扩散层制备、催化层制备和整合成型三个工艺过程。本发明专利技术采用碳载铂催化剂分散在有机溶剂(醇、醚、酯或酮)中,超声波能将催化剂聚集体分散均匀,再加入聚合物电解质超声波分散后,聚合物电解质易吸附于碳载铂催化剂表面,聚合物电解质既作为粘结剂,使催化剂和质子交换膜粘结牢固,同时又作为质子导体,用来延伸电极三相反应界面,电极催化层中铂用量明显降低,且节省了PTFE原料,不仅制备工艺简单,而且电化学性能也有所提高。(*该技术在2020年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及一种产品的制造方法,特别是一种质子交换膜燃料电池膜三合一的制备方法。质子交换膜燃料电池(PEMFC)具有高功率密度,高能量转换效率,低温启动,环境友好等优点,最有希望成为零污染排放电汽车的动力源,许多发达国家都在投巨资发展这一技术。质子交换膜燃料电池(PEMFC)的电极为多孔气体扩散电极,纯铂或Pt/C作为电催化剂,全氟磺酸固体聚合物充当电解质,氢气为燃料,氧气或空气为氧化剂。PEMFC使用金属铂催化剂,由于其昂贵的价格和有限的资源,因此在PEMFC常采用Pt/C,而铂在碳黑上分散的均匀性,铂的粒度影响Pt/C的性能,本专利技术涉及,铂含量为0.02-0.04mg/cm2,特别提供了一种易于操作、价格便宜、容易放大超低铂载量的膜三合一制备技术,这对降低电极的生产成本起到了重要作用。目前制备膜电极三合一方法比较多在美国专利3,134,697中,将纯铂黑催化剂与稀释的离子交换树脂溶液直接混合,搅拌均匀后在玻璃板表面制备催化层,在高温、高压条件下,将催化层转移到离子交换膜表面,此缺点是采用高温、高压处理,致使离子交换膜部分降解,导致电池性能下降。在美国专利4,272,353中,采用SiC砂纸将离子交换膜表面磨粗糙,增加催化剂和膜的接触面积,该方法操作工艺繁琐,难以实现膜电极三合一大规模生产。在美国专利4,326,930中,采用电沉积法制备电极催化层,需要特殊装置生产,电解液易造成环境污染。在美国专利4,876,115中用聚四氟乙稀(PTFE)粘结Pt/C催化剂在扩散层表面制备催化层,用聚合物电解质浸渍电极催化层,用来延伸电极三相反应界面,但铂催化剂用量仍较高(0.35~0.50mg/cm2)。在美国专利5,211,984及美国专利5,234,777中,Pt/C催化剂、Nafion溶液、水、NaOH溶液和甘油直接混合,在超声波中分散均匀后,用该催化剂“墨汁”在聚四氟乙稀膜表面铸造电极催化层,在135℃下烘干后,用贴花转移法将催化层转移到Na+型质子交换膜表面,再用H2SO4溶液将Na+型质子交换膜质子化,电极扩散层直接放到含有催化层的质子交换膜两侧,该专利方法制备工艺复杂,生产周期较长。在美国专利5,272,017中,Pt/C催化剂、Nafion溶液、PTFE乳液、有机溶剂和水混合制得的催化剂“墨汁”被刷到质子交换膜表面,在90~95℃下干燥30分钟,以除去有机溶剂,然后在高温(150℃)、高压(1000-2000lb/in2)条件下,将催化剂粒子部分嵌入到质子交换膜表面,该专利方法电极扩散层中含有催化剂,制备成本较高,电池性能也不够理想。在美国专利5,415,888中,将Nafion溶液、有机溶剂、水和20% Pt/C催化剂混合,磁力搅拌子搅拌均匀后,用丝网印刷法在质子交换膜表面制备催化层,该专利方法铂催化剂载量高,需要在质子交换膜表面多次丝网印刷催化层,且催化剂“墨汁”损失较多。在美国专利5,702,755中,将20% Pt/C催化剂、聚合物电解质树脂、有机溶剂、水和氢氧化四丁基胺混合溶液,用磁力搅拌子搅拌均匀后,加入碳酸丙稀酯制得催化剂“墨汁”,用美国专利5,211,984及美国专利5,234,777中的贴花转移法将催化剂“墨汁”转移到质子交换膜表面,电极扩散层使用浸渍聚四氟乙稀乳液和碳粉的石墨化碳布,该专利方法铂催化剂载量仍较高。本专利技术的目的是提供一种可以有效克服上述问题发生的膜三合一的制备方法,它易于操作、制造成本低廉。本专利技术的目的是这样实现的以Nafion溶液粘结Pt/C催化剂,在有机溶剂(醇、醚、酯或酮)润胀后的质子交换膜表面喷涂催化层,在低温条件(80~100℃)下烧结,电极扩散层使用浸渍聚四氟乙稀乳液和碳粉混合物的碳纸,制备了超低铂载量膜电极三合一,铂催化剂用量降低到0.02~0.04mg/cm2。它包括扩散层制备、催化层制备和整合成型三个工艺过程,具体内容如下1.扩散层制备采用碳纸、聚四氟乙稀(PTFE)乳液和XC-72碳粉制备电极扩散层。XC-72碳粉和碳纸在使用前需用硝酸化学处理和高温热处理。将PTFE和XC-72碳粉混合水溶液用超声波分散均匀后,采用涂布法涂到碳纸两侧,室温晾干后,最后在350℃下烧结1小时,即制得扩散层;2.催化层制备1)采用低沸点的有机溶剂(醇、醚、酯或酮)对质子交换膜进行润胀处理;2)将碳载铂催化剂分散在有机溶剂(醇、醚、酯或酮)中,采用超声波将催化剂聚集体分散均匀,再加入聚合物电解质形成催化剂“墨汁”;3)将润胀的质子交换膜展平,使催化剂“墨汁”能够均匀地、连续地转移到质子交换膜表面;4)采用喷涂法将催化剂“墨汁”直接转移到质子交换膜表面;3.整合成型采用低温(80~100℃)烧结,使聚合物电解质作为粘结剂,使催化层和扩散层粘结牢固,同时聚合物电解质作为质子导体,用来延伸电极三相反应界面。本专利技术采用低沸点的有机溶剂(醇、醚、酯或酮)对质子交换膜进行润胀处理,使质子交换膜表面积增大,催化剂“墨汁”均匀地转移到质子交换膜表面后,在低温(80~100℃)下烧结,质子交换膜将收缩,催化剂粒子将部分嵌入质子交换膜表面,增加了催化剂和膜的接触面积,能够提高催化剂利用率,降低电极中催化剂载量。避免了美国专利3,134,697、美国专利5,272,017中采用高温、高压条件增加催化剂和膜的接触,致使离子交换膜部分降解,导致电池性能下降;本专利技术调配的催化剂“墨汁”粘度小,且分散均匀,可采用喷涂法在质子交换膜表面直接制备电极催化剂层,与现有
技术介绍
相比,制备工艺简单,生产周期短。本专利技术采用碳载铂催化剂分散在有机溶剂(醇、醚、酯或酮)中,超声波能将催化剂聚集体分散均匀,再加入聚合物电解质超声波分散后,聚合物电解质易吸附于碳载铂催化剂表面,聚合物电解质既作为粘结剂,使催化剂和质子交换膜粘结牢固,同时又作为质子导体,用来延伸电极三相反应界面,与文献(4)相比,电极催化层中铂用量明显降低,且节省了PTFE原料。综上所述,采用专利技术所提及的方法制备膜电极三合一,不仅制备工艺简单,而且电化学性能也有所提高。下面结合附图详述本专利技术。附图说明图1为本专利技术实施例一单电池评价装置上测试电池极化曲线图。图2为本专利技术实施例二单电池评价装置上测试电池极化曲线图。图3为本专利技术实施例三单电池评价装置上测试电池极化曲线图。图4为本专利技术实施例四单电池评价装置上测试电池极化曲线图。图5为每毫克铂所产生电流利用率曲线图。如图所示,本专利技术目的可以通过如下实施例实现实施例一采用碳纸、聚四氟乙稀(PTFE)乳液和XC-72碳粉制备电极扩散层。XC-72碳粉和碳纸在使用前需用硝酸化学处理和高温热处理。将PTFE和XC-72碳粉混合水溶液用超声波分散均匀后,采用涂布法涂到碳纸两侧,室温晾干后,最后在350℃下烧结1小时,即制得扩散层。质子交换膜使用美国Du Pont公司出售的Nafion膜,Nafion膜在使用前需进行预处理,以除去表面的有机物和金属离子杂质。具体步骤如下首先用3~5%H2O2在80℃下煮1小时,然后用二次蒸馏水冲洗三次,再用0.5M的H2SO4在80℃下煮1小时,最后再用二次蒸馏水在80℃下煮三次,每次30分钟。预处理后的质子交换膜放到有机溶剂(醇、醚、酯或酮,醇∶醚∶酯或酮为1∶本文档来自技高网
...

【技术保护点】
一种超低Pt载量的膜三合一制备方法,其特征是:它包括扩散层制备、催化层制备和整合成型三个工艺过程,具体内容如下:(1)扩散层制备采用碳纸、聚四氟乙稀(PTFE)乳液和XC-72碳粉制备电极扩散层。XC-72碳粉和碳纸在使用前需用硝酸 化学处理和高温热处理。将PTFE和XC-72碳粉混合水溶液用超声波分散均匀后,采用涂布法涂到碳纸两侧,室温晾干后,最后在350℃下烧结1小时,即制得扩散层;(2)催化层制备1)采用低沸点的有机溶剂(醇、醚、酯或酮,醇∶醚∶酯或酮为1 ∶0-3∶0-5)对质子交换膜进行润胀处理;2)将碳载铂催化剂分散在有机溶剂(醇、醚、酯或酮,其中醇可为甲醇、乙醇、异丙醇、乙二醇;醚可为乙醚、石油醚;酯或酮可为乙酸乙酯和丙酮)中,采用超声波将催化剂聚集体分散均匀,再加入聚合物电解质形 成催化剂“墨汁”;3)将润胀的质子交换膜展平,使催化剂“墨汁”能够均匀地、连续地转移到质子交换膜表面;4)采用喷涂法将催化剂“墨汁”直接转移到质子交换膜表面;(3)整合成型采用低温(80~100℃)烧结,使聚合物电解质作为粘 结剂,使催化层和扩散层粘结牢固,同时聚合物电解质作为质子导体,用来延伸电极三相反应界面。...

【技术特征摘要】

【专利技术属性】
技术研发人员:张义煌董辉田丙伦王书文王瑞杰闫晋州庄宇洋
申请(专利权)人:沈阳东宇企业集团有限公司
类型:发明
国别省市:89[中国|沈阳]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利