一种智慧文博下融合多因素的矩阵分解个性化推荐方法技术

技术编号:32519101 阅读:35 留言:0更新日期:2022-03-02 11:19
本发明专利技术公开了一种智慧文博下融合多因素的矩阵分解个性化推荐方法,该方法包括:对用户历史数据集进行初始化并分析处理,运用F

【技术实现步骤摘要】
一种智慧文博下融合多因素的矩阵分解个性化推荐方法


[0001]本专利技术涉及大数据推荐方法领域,尤其涉及一种智慧文博下融合多因素的矩阵分解个性化推荐方法。

技术介绍

[0002]随着近年来物联网技术飞速发展、人们生活水平不断提高、互联网用户规模快速增加、用户需求多样性,人们在海量数据中获取感兴趣的内容变得更加困难,如何准确捕捉用户感兴趣的内容是当前亟需解决的问题。
[0003]现在,人们生活离不开手机,网络信息呈现多样性和海量性,如果没有很好的依据给用户进行推送,那么很可能推送的大部分内容是用户不想看到的,大大降低了用户的体验感,因此研究精确的推荐算法非常有必要。推荐算法主要分为个性化推荐和大众化推荐。大众化推荐是基于相似信息的推荐,不能很好的表现出当前用户的特征,而个性化推荐能够更好的反映出用户的特征喜好,能提高推荐的准确度,存在着巨大的商业价值。融合多因素的矩阵分解个性化推荐算法可以帮助电子商务等行业进行更精准的商品推荐,减少用户浏览到重复或厌恶的信息带来的不利影响。
[0004]为了提高推荐的精确度,现有工作主要集中在解决本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种智慧文博下融合多因素的矩阵分解个性化推荐方法,其特征在于,该方法包括以下步骤:步骤一、对用户历史数据集进行初始化并分析处理,根据输入的特征维度构建用户

项目的评分矩阵R,并构建改进后的皮尔森相关系数F

PEARSON,运用F

PEARSON计算出用户与其他用户的相似性得分;步骤二、根据基于机器学习的BERT模型训练用户历史数据集,预测出每个用户对不同年代不同类型电影的评分;步骤三、构建F

SVD算法:根据用户

项目的评分矩阵R和输入的特征维度D转为用户的特征矩阵U和项目的特征矩阵V,并结合步骤一得到的用户相似性得分、步骤二得到的预测评分,构建得到融合多因素的预测评分公式和目标函数;步骤四、输入待预测的用户数据,将其代入F

SVD算法的融合多因素的预测评分公式和目标函数中,运用随机梯度下降法进行求解,使得目标函数下降最快,得到预测评分。2.根据权利要求1所述的融合多因素的矩阵分解个性化推荐方法,其特征在于,所述步骤一中F

PEARSON的具体方法为:考虑到两个用户对电影评分的平均值,若用户评分的平均值越接近那么认为用户越相似,表示为:式中a
(u1,u2)
表示用户u1和用户u2关于平均评分的相似度,代表用户u1对所有电影评分的平均值,代表用户u2对所有电影评分的平均值,χ是调整超参数;还考虑到两个用户共同评分的电影,其中包括共同评分电影的数量,共同评分电影的评分值,两个用户共同评分的电影越多代表两个用户的兴趣更接近;式中c
(u1,u2)
表示用户u1和用户u2在共同评分电影的相似度,r
(u1,i)
代表用户u1对电影i的评分,r
(u2,i)
代表用户u2对电影i的评分,代表用户u1的平均评分,代表用户u2的平均评分;统计用户多长时间评价一部电影,考虑到两个用户评分电影的频率,评分频率越接近认为他们更相似,对取到的用户频繁频率进行归一化处理:式中f
(u1,u2)
表示两个用户关于评分频率的相似度,代表用户u1最近一次评分电影的时间戳,代表用户u1最早一次评价电影的时间戳,代表用户u2最近一次评分电影的时间戳,代表用户u2最早一次评价电影的时间戳,γ是调整超参数;综合以上因素,最终用户的相似度计算公式为:
式中Su表示F

PEARSON相似度。3.根据权利要求1所述的智慧文博下融合多因素的矩阵分解个性化推荐方法,其特征在于,所述用户历史数据集中包括:电影id,movieId;用户id,userId;评分,rating;电影类型,genres;时间戳,timestamp;标签,tags。4.根据权利要求3所述的智慧文博下融合多因素的矩阵分解个性化推荐方法,其特征在于,所述步骤二中BERT模型训练的具体方法为:加入BERT模型对历史数据进行训练,输入为提取的信息,包括:itemId,项目id;userId,用户id;rating,评分;genres,类别;输出为用户对电影的预测评分,最后取前k个用户的预测评分均值,计算公式表示为用户的预测评分均值,计算公式表示为为用户对某个年代某种类型项目的评分。5.根据权利要求1所述的智慧文博下融合多因素的矩阵分解个性化推荐方法,其特征在于,所述步骤三中构建得到融合多因素的预测评分公式...

【专利技术属性】
技术研发人员:朱容波金焕章王俊
申请(专利权)人:中南民族大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1