本发明专利技术涉及智能养鱼技术领域,具体涉及一种智能喂食控制系统,包括:数据采集模块,用于实时采集鱼缸内的图像信息和喂养参数;图像识别模块,用于在图像信息中识别鱼的种类以及鱼的运动形态;喂养判断模块,用于获取鱼的种类对应的预设喂养条件,判断喂养参数是否符合预设喂养条件;参数调整模块,用于采用模糊神经网络算法根据鱼的种类以及鱼的运动形态计算喂养参数的校正因子,根据校正因子对喂养参数进行调整;鱼料投放模块,用于接收投放鱼料的指令,并向鱼缸内投放鱼料。本发明专利技术采用模糊神经网络算法根据鱼的种类以及鱼的运动形态计算喂养参数的校正因子,根据校正因子对喂养参数进行调整,提高了喂养参数调整的精确性以及喂食的效果。喂食的效果。喂食的效果。
【技术实现步骤摘要】
智能喂食控制系统
[0001]本专利技术涉及智能养鱼
,具体涉及一种智能喂食控制系统。
技术介绍
[0002]随着生活水平的不断提高,越来越多的人在家里养殖观赏鱼。虽说养鱼会给生活带来不少乐趣,但是需要经常给鱼进行喂食。当遇到工作繁忙或者出差、旅行,家里没有人的时候,无法及时给鱼喂食。
[0003]对此,可利用智能化的养鱼控制技术对鱼缸进行自动化管理,方便家里没有人的时候自动喂食。比如说,通过控制器实现自动化控制喂食,控制器与摄像头配合,在控制器内搭建卷积神经网络及模型,通过图像识别技术识别鱼缸中的鱼的种类及数量,达到精确投食和增强观赏性的目的;这样既能通过控制器实现自动控制及本地控制,又可以通过远程智能监控设备远程观测鱼缸并控制做出相应操作,从而实现鱼缸喂食的全自动化控制。
[0004]由于不同种类的鱼均有对应的适合的喂养条件,比如说,冷水鱼(锦鲤、草种金鱼、文种金鱼、龙种金鱼等)适合的PH值在6.8~7.5之间,适合的氧含量在6~8mg/L之间,适合的水温在20~25度之间,换水温差不宜大于3度;中型热带鱼(银鼓、蓝鲨、鹦鹉鱼和罗汉鱼等)适合的PH值在6.5~7.1之间,适合的氧含量在6~8mg/L之间,适合的水温在26~30度之间,最适宜温度28度,换水前后温差不宜大于1度;小型热带鱼(燕鱼、灯鱼、金波子和曼龙鱼等)适合的PH值在6.5~7.5之间,适合的氧含量在6~8mg/L之间,适合的水温在22~28度之间,换水前后温差不宜大于1度。但是,随着时间的推移,PH值、氧含量和水温均会发生变化,现有技术只能够实现全自动向鱼缸喂食,无法及时智能调整PH值、氧含量和水温(特别是氧含量)等喂养参数。
技术实现思路
[0005]本专利技术提供一种智能喂食控制系统,解决了现有技术无法及时智能调整喂养参数的技术问题。
[0006]本专利技术提供的基础方案为:智能喂食控制系统,包括:
[0007]数据采集模块,用于实时采集鱼缸内的图像信息和喂养参数;
[0008]图像识别模块,用于在图像信息中识别鱼的种类以及鱼的运动形态;
[0009]喂养判断模块,用于获取鱼的种类对应的预设喂养条件,判断喂养参数是否符合预设喂养条件:如果喂养参数符合预设喂养条件,发送投放鱼料的指令到鱼料投放模块;如果喂养参数不符合预设喂养条件,发送调整喂养参数的指令到参数调整模块;
[0010]参数调整模块,用于接收调整喂养参数的指令,采用模糊神经网络算法根据鱼的种类以及鱼的运动形态计算喂养参数的校正因子,根据校正因子对喂养参数进行调整,并在调整完毕之后发送再次采集的指令到数据采集模块;
[0011]鱼料投放模块,用于接收投放鱼料的指令,并向鱼缸内投放鱼料。
[0012]本专利技术的工作原理及优点在于:
[0013](1)获取鱼缸内的喂养参数,确保喂养参数符合预设喂养条件时才进行喂食,相较于现有技术不考虑喂养条件直接进行喂食来说,保证了喂食时鱼缸内的喂养条件为适合的喂养条件,适合的喂养条件使得鱼能够进行最佳的生物活动(比如说游动)与最佳的生理活动(比如说消化),有利于鱼料的充分吸收,也有利于鱼的生长,同时还减少了鱼料的浪费;
[0014](2)获取鱼缸内的图像信息,在图像信息中识别鱼的种类,根据鱼的种类确定喂食的鱼料种类,鱼料种类与鱼的种类对应,确保鱼料的针对性,相较于现有技术不考虑鱼的种类直接进行喂食来说,确保喂食过程“投其所好”,使得鱼的种类与鱼料种类对应,既防止了鱼料的浪费,又能够避免鱼误食与之不对应的鱼料,从而避免鱼因误食造成生理不佳;此外,鱼的种类与鱼料种类对应,鱼只会向其对应的鱼料靠近,避免了喂食过程中鱼的结群、扎堆,由于鱼的结群、扎堆会延长鱼吃鱼料的时间,这样减少鱼的结群、扎堆,有利于鱼快速吃完鱼料,提高喂食效率;
[0015](3)在投放鱼料之前根据校正因子智能化调整喂养参数,考虑了鱼的种类及其运动形态,相较于现有技术直接通过比较数值进行调整来说,能够提高调整的精确性,提高喂食的效果;此外,由于鱼的运动形态反映了鱼的生物活动(比如说游动)与生理活动(比如说消化),先根据鱼的运动形态计算喂养参数的校正因子,后根据校正因子对喂养参数进行调整,实质上是根据鱼的生物活动和生理活动的变化规律对喂养参数进行调整,从而使得调整后的喂养参数与鱼当前的生物活动和生理活动相匹配,有利于鱼料的充分吸收,也有利于鱼的生长,同时还减少了鱼料的浪费。
[0016]本专利技术采用模糊神经网络算法根据鱼的种类以及鱼的运动形态计算喂养参数的校正因子,根据校正因子对喂养参数进行调整,考虑了鱼的种类及其运动形态,提高了喂养参数调整的精确性以及喂食的效果。
[0017]进一步,参数调整模块还用于获取预先采集的历史喂养参数,基于粒子群算法根据历史喂养参数对模糊神经网络算法进行训练。
[0018]有益效果在于:用粒子群算法根据历史喂养参数对模糊神经网络算法进行训练,可以提高计算得到的校正因子的精确度。
[0019]进一步,参数调整模块还用于对预先采集的历史喂养参数进行归一化处理。
[0020]有益效果在于:归一化处理可以将数据变为0~1之间的小数,也可以把有量纲表达式变为无量纲表达式,把数据映射到0~1范围之内,处理更加便捷快速。
[0021]进一步,鱼料投放模块还用于接收鱼的种类,根据鱼的种类确定投放的鱼料种类。
[0022]有益效果在于:不同种类的鱼偏好的鱼料种类可能不同,使得鱼料种类与鱼的种类对应,确保鱼料的针对性以投其所好。
[0023]进一步,图像识别模块还用于确定鱼的数量和体长;鱼料投放模块还用于根据鱼的数量和体长得到鱼的平均体长,并根据平均体长确定投放的鱼料粒径,鱼料粒径与平均体长成正比例。
[0024]有益效果在于:不同体长的鱼其体积大小也不同,通常体积较大的大鱼对鱼料的咀嚼能力强于体积较小的小鱼对鱼料的咀嚼能力,这样可以确保大部分鱼料能够被鱼完全咀嚼。
[0025]进一步,鱼料投放模块还用于根据平均体长确定投放的鱼料硬度,鱼料硬度与平均体长成正比例。
[0026]有益效果在于:同样的,体积较大的大鱼对鱼料的消化能力强于体积较小的小鱼对鱼料的消化能力,这样可以确保大部分鱼料能够被鱼快速消化和吸收。
[0027]进一步,鱼料投放模块还用于根据鱼的数量和体长确定所需喂食的鱼料投放量,鱼料投放量与鱼的数量和体长成正比。
[0028]有益效果在于:鱼料投放量根据鱼的数量和体长确定,确保鱼料投放量与鱼的数量和体长成正比,避免投放的鱼料过多或者过少,提高鱼料投放量的精准性。
[0029]进一步,鱼料投放模块还用于根据鱼的平均体长确定鱼料的投放次数,根据投放次数和鱼料投放量确定单次投放量,投放次数与鱼的平均体长成反比例。
[0030]有益效果在于:体积较大的大鱼吃鱼料的速度通常快于体积较小的小鱼吃鱼料的速度,鱼料投放量确定之后,投放次数越多,单次投放量越少,这样可确保每次投放的鱼料大部分能够被鱼吃完。本文档来自技高网...
【技术保护点】
【技术特征摘要】
1.智能喂食控制系统,其特征在于,包括:数据采集模块,用于实时采集鱼缸内的图像信息和喂养参数;图像识别模块,用于在图像信息中识别鱼的种类以及鱼的运动形态;喂养判断模块,用于获取鱼的种类对应的预设喂养条件,判断喂养参数是否符合预设喂养条件:如果喂养参数符合预设喂养条件,发送投放鱼料的指令到鱼料投放模块;如果喂养参数不符合预设喂养条件,发送调整喂养参数的指令到参数调整模块;参数调整模块,用于接收调整喂养参数的指令,采用模糊神经网络算法根据鱼的种类以及鱼的运动形态计算喂养参数的校正因子,根据校正因子对喂养参数进行调整,并在调整完毕之后发送再次采集的指令到数据采集模块;鱼料投放模块,用于接收投放鱼料的指令,并向鱼缸内投放鱼料。2.如权利要求1所述的智能喂食控制系统,其特征在于,参数调整模块还用于获取预先采集的历史喂养参数,基于粒子群算法根据历史喂养参数对模糊神经网络算法进行训练。3.如权利要求2所述的智能喂食控制系统,其特征在于,参数调整模块还用于对预先采集的历史喂养参数进行归一化处理。4.如权利要求3所述的智能喂食控制系统,其特征...
【专利技术属性】
技术研发人员:邓汝炬,蔡诗,李俊斌,杨岩,陈桂波,曹辉,
申请(专利权)人:广州市蓝得生命科技有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。