燃料电池系统的氮气浓度自适应控制方法技术方案

技术编号:30529636 阅读:76 留言:0更新日期:2021-10-27 23:19
本发明专利技术提供了燃料电池系统的氮气浓度自适应控制方法,包括:判断是否触发更新条件;执行扩散系数获取操作:扩散系数计算公式为;获取膜的氢气扩散系数;将氢气的扩散系数转化为氮气的扩散系数,其转化公式为;根据氮气的扩散系数调整系数标定量。本发明专利技术通过在线的扩散系数获取操作,可以获得电堆在不同生命周期状态下的膜的氢气的气体扩散系数,通过氢气和氮气之间的转化关系,从而得到氮气的气体扩散系数,利用其调整系统的标定参数,得到燃料电池系统性能和耐久性的最优控制效果。果。果。

【技术实现步骤摘要】
燃料电池系统的氮气浓度自适应控制方法


[0001]本专利技术主要涉及燃料电池系统
,具体为燃料电池系统的氮气浓度自适应控制方法。

技术介绍

[0002]质子交换膜燃料电池的工作原理是氢气和氧气发生电化学反应,生成水的同时输出电能。由于燃料电池单体的电压通常小于1V,在实际应用时,需要将上百片单体串联组成燃料电池电堆,并匹配相应的外围附件,构成燃料电池系统。
[0003]性能是燃料电池系统的核心指标之一,燃料电池系统运行过程中,为了提高利用率,通常采用阳极循环的系统架构,但该架构会导致氢气侧的废气无法及时排出,尤其是氮气,导致反应气体氢气浓度不足,引起局部的碳腐蚀影响寿命,严重的甚至引起电堆电压反极形成不可逆的衰减。对于氢气侧的氢气浓度有通过安装氢气浓度传感器或者基于模型计算的方法等,但是由于传感器成本较高且在有液态水的情况下容易损坏,而基于模型的估计方法则由于其模型参数是初始状态的,一般是出厂状态的,但由于其估计的关键参数是随着燃料电池的衰减而不断变化的,因此估计的结果无法反应燃料电池全生命周期的氢气侧氢气浓度的真实状态。

技术实现思路

[0004]本专利技术主要提供了燃料电池系统的氮气浓度自适应控制方法,用以解决上述
技术介绍
中提出的技术问题。
[0005]本专利技术解决上述技术问题采用的技术方案为:燃料电池系统的氮气浓度自适应控制方法,所述方法包括S01)判断是否触发更新条件,所述更新条件为燃料电池系统距离上一次更新运行100小时,满足更新条件进入下一步,否则继续判断直到满足更新条件;S02)执行扩散系数获取操作:关闭燃料电池空气侧的进出口阀门,在氢气侧供给预设压力的氢气,采集时间后的压力值,扩散系数计算公式为;其中为通用气体常数,为操作时的电堆温度,为操作时间;S03)获取膜的氢气扩散系数,由S02)中扩散系数得到;S04)将氢气的扩散系数转化为氮气的扩散系数,其转化公式为;其中常数可以通过膜的材料的理论化学特性获取;S05)根据氮气的扩散系数调整系数标定量,首先在试验中获取不同氮气扩散系数数值和系统标定量的MAP关系,测定氮气的扩散系数后即根据可根据氮气的扩散系数得到相应的系统标定量,对燃料电池的系统标定量进行调整。
[0006]优选的,所述常数还可以通过实验室标定获取。
[0007]优选的,所述系统标定量可以是吹扫电磁阀的开启时间。
[0008]优选的,所述系统标定量还可以是吹扫电磁阀的开启频率。
[0009]与现有技术相比,本专利技术的有益效果为:本专利技术通过在线的扩散系数获取操作,可以获得电堆在不同生命周期状态下的膜的氢气的气体扩散系数,通过氢气和氮气之间的转化关系,从而得到氮气的气体扩散系数,利用其调整系统的标定参数,得到燃料电池系统性能和耐久性的最优控制效果。
[0010]以下将结合附图与具体的实施例对本专利技术进行详细的解释说明。
附图说明
[0011]图1为本专利技术氮气浓度自适应控制方法的流程图;图2为现有技术中燃料电池系统构型图。
具体实施方式
[0012]为了便于理解本专利技术,下面将参照相关附图对本专利技术进行更加全面的描述,附图中给出了本专利技术的若干实施例,但是本专利技术可以通过不同的形式来实现,并不限于文本所描述的实施例,相反的,提供这些实施例是为了使对本专利技术公开的内容更加透彻全面。
[0013]需要说明的是,当元件被称为“固设于”另一个元件,它可以直接在另一个元件上也可以存在居中的元件,当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件,本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
[0014]除非另有定义,本文所使用的所有的技术和科学术语与属于本专利技术的
的技术人员通常连接的含义相同,本文中在本专利技术的说明书中所使用的术语知识为了描述具体的实施例的目的,不是旨在于限制本专利技术,本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
[0015]请着重参照附图1

2,燃料电池系统的氮气浓度自适应控制方法,包括S01)判断是否触发更新条件,更新条件为燃料电池系统距离上一次更新运行100小时,满足更新条件进入下一步,否则继续判断直到满足更新条件;S02)执行扩散系数获取操作:关闭燃料电池空气侧的进出口阀门,在氢气侧供给预设压力的氢气,采集时间后的压力值,扩散系数计算公式为;其中为通用气体常数,为操作时的电堆温度,为操作时间;S03)获取膜的氢气扩散系数,由S02)中扩散系数得到;S04)将氢气的扩散系数转化为氮气的扩散系数,其转化公式为;其中常数可以通过膜的材料的理论化学特性获取;S05)根据氮气的扩散系数调整系数标定量,首先在试验中获取不同氮气扩散系数数值和系统标定量的
MAP关系,测定氮气的扩散系数后即根据可根据氮气的扩散系数得到相应的系统标定量,对燃料电池的系统标定量进行调整。
[0016]常数还可以通过实验室标定获取。
[0017]系统标定量可以是吹扫电磁阀的开启时间,还可以是吹扫电磁阀的开启频率。
[0018]本专利技术的具体操作方式如下:首先,“判断是否触发更新条件”指的是是否达到了燃料电池系统距离上次更新运行了100小时,即每100小时进行一次执行扩散系数获取操作,扩散系数通过计算公式和、和即可得到,将燃料电池空气侧的进出口阀门关闭,在氢气侧供给预设压力的氢气,采集时间后的压力值,为通用气体常数,为操作时的电堆温度,为操作时间;由扩散系数得到;;常数可以通过膜的材料的理论化学特性获取也可以通过在实验室标定获取,此为现有技术在此不做赘述;接着根据氮气的扩散系数调整燃料电池的系数标定量,已知能够在试验中获取不同氮气扩散系数数值和燃料电池的系统标定量的MAP关系,所以在获取氮气的扩散系数后,就可以根据MAP调节相应的燃料电池的系数标定量,例如调节吹扫电磁阀3的开启时间,或者它的开启频率,下表给出了根据氮气扩散系数调整吹扫电磁阀3开启时间的MAP示意关系:氮气扩散系统1.01.52.02.5吹扫电磁阀开启时间/s0.30.40.50.6且现有的技术如所述图2为典型的燃料电池系统构型图,包括由氢气控制阀1,氢气循环泵2,吹扫电磁阀3,电堆4,调压阀5,空压机6,氢气压力传感器7构成的燃料电池系统。空气由空压机6的一侧进入,由调压阀5一侧出去,氢气从氢气控制阀1一侧进入,从吹扫电磁阀3一侧进行循环。
[0019]上述结合附图对本专利技术进行了示例性描述,显然本专利技术具体实现并不受上述方式的限制,只要采用了本专利技术的方法构思和技术方案进行的这种非实质改进,或未经改进将本专利技术的构思和技术方案直接应用于其他场合的,均在本专利技术的保护范围之内。
本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.燃料电池系统的氮气浓度自适应控制方法,其特征在于,所述方法包括S01)判断是否触发更新条件,所述更新条件为燃料电池系统距离上一次更新运行100小时,满足更新条件进入下一步,否则继续判断直到满足更新条件;S02)执行扩散系数获取操作:关闭燃料电池空气侧的进出口阀门,在氢气侧供给预设压力的氢气,采集时间后的压力值,扩散系数计算公式为;其中为通用气体常数,为操作时的电堆温度,为操作时间;S03)获取膜的氢气扩散系数,由S02)中扩散系数得到;S04)将氢气的扩散系数转化为氮气的扩散系数,其转化公式为;其中常数通过膜的材料的理论化学特性获取...

【专利技术属性】
技术研发人员:赵兴旺李飞强张国强方川高云庆
申请(专利权)人:北京亿华通科技股份有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1