【技术实现步骤摘要】
一种基于位置卷积注意力网络的血管斑块CT影像分割方法
本专利技术涉及医学影像
,具体涉及一种基于位置卷积注意力网络的血管斑块CT影像分割方法。
技术介绍
目前主流的血管斑块筛查技术是利用CT技术形成影像,后由人工分析。但人工分析水平往往有限。以往的医学图像分割主要基于传统的图像分割方法,方法是简单的利用图像的纹理、形状、灰度等特性把图像分割成几个互不相交的区域,且分割性能优劣没有客观的判断标准。随着人工智能技术的发展,利用深度学习的影像自动分析技术能够代替人力的基础上大大提升分析的时间和效率,故对血管斑块CT影像的自动分析技术的研究显得尤为重要。
技术实现思路
本专利技术为了克服以上技术的不足,提供了一种在不需要人工干预的情况下,快速的对血管斑块进行筛查并标注的CT影像分割方法。本专利技术克服其技术问题所采用的技术方案是:一种基于位置卷积注意力网络的血管斑块CT影像分割方法,包括如下步骤:a)对采集的血管斑块CT影像进行图像预处理操作;b)遍历预处理后的图像,统计图像 ...
【技术保护点】
1.一种基于位置卷积注意力网络的血管斑块CT影像分割方法,其特征在于,包括如下步骤:/na)对采集的血管斑块CT影像进行图像预处理操作;/nb)遍历预处理后的图像,统计图像大小,将图像大小裁剪为512×512后输出图像为D,D∈R
【技术特征摘要】
1.一种基于位置卷积注意力网络的血管斑块CT影像分割方法,其特征在于,包括如下步骤:
a)对采集的血管斑块CT影像进行图像预处理操作;
b)遍历预处理后的图像,统计图像大小,将图像大小裁剪为512×512后输出图像为D,D∈RC×H×W,R为实数空间,C为图像通道数,H为图像高度,W为图像宽度;
c)将图像D输入到位置卷积注意力网络中的位置注意力模块的二维卷积层中,生成三个特征图D1∈RC×H×W、D2∈RC×H×W、D3∈RC×H×W,将特征图D1、D2、D3的大小重塑为RC×Q,Q=H×W;
d)将特征图D1和D2输入到位置卷积注意力网络中的位置注意力模块的位置注意力层,得到包含像素位置关联度和依赖度的注意力特征图D4;
e)利用特征图D3与特征图D4生成聚合影像特征图E;
f)将图像D输入到位置卷积注意力网络中的V-Net模块,初始为D=D0,0,将D0,0进行下采样处理后得到输出图像D1,0,
g)将图像D1,0重复进行三次下采样处理,依次得到输出图像D2,0、D3,0、D4,1,
h)对图像D4,1进行上采样处理后作为输入依次输入二维卷积层、Dropout层后通过公式Di,1=Concat(D0,0,…Di,0,Upsample(Di+1,1))i=3,2,1分别计算得到第1次上采样的输出图像D3,1、第二次上采样的输出图像D2,1以及第三次上采样的输出图像D1,1,式中Concat(·)为跳跃连接机制,Upsample(·)为上采样操作,
i)对图像D1,1进行上采样处理,生成恢复特征图D0,1,D0,1∈RC×H×W;
j)将聚合影像特征图E和恢复特征图D0,1输入到位置卷积注意力网络中的特征图融合模块中,通过公式P=∑i∑jEi,j+(D0,1)i,j将聚合影像特征图E与恢复特征图D0,1融合,生成血管斑块影像分割图像P,式中Ei,j为聚合影像特征图E的像素点,(D0,1)i,j为恢复特征图D0,1的像素点。
2.根据权利要求1所述的基于位置卷积注意力网络的血管斑块CT影像分割方法,其特征在于,步骤a)包括如下步骤:
a-1)通过公式利用z-score归一化方法计算得到归一化处理后CT影像中血管斑块的区域式中xoriginal为输入的血管斑块CT样本,μ为批处理数据的均值,σ为批处理数据的方差,π为给定常数;
a-2)归一化后的图像为m行n列,通过公式将图像表示为二维的数组,通过公式F...
【专利技术属性】
技术研发人员:王英龙,徐鹏摇,舒明雷,周书旺,
申请(专利权)人:山东省人工智能研究院,齐鲁工业大学,
类型:发明
国别省市:山东;37
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。