【技术实现步骤摘要】
一种基于改进的RetinaNet小目标检测方法
本专利技术涉及深度学习中的目标检测领域,针对小目标检测尤其是行人与车辆检测技术。
技术介绍
随着计算机视觉技术的发展与硬件设备性能的提高,目标检测技术在生产生活运用度大幅提高,特别是行人与车辆检测是当今最为常见的检测运用场景。如图1所示,行人与车辆两类目标在实际检测场景出通常呈现出目标尺寸小、场景环境复杂的特点,传统依靠人眼对监控视频进行定位与排查效率低下,且准确度不高,易出现漏检误检等现象。此外人眼筛查无法满足实时监控与检测的要求。因此行人与车辆检测就显得十分重要。常见的检测算法通常分为以下几类:(1)基于人工提取特征的目标检测算法:该类算法主要包括HOG、SIFT、SURF以及DPM等;(2)基于卷积神经网络的目标检测算法:该类算法又可细分为两类,一类为单阶段目标检测算法,包括SSD、YOLOV3、RetinaNet等;另一类则是双阶段检测算法,包括SPPNet以及RCNN系列模型。随着深度学习的不断进步和发展,其在生产生活等领域的应用越来越 ...
【技术保护点】
1.一种基于改进的RetinaNet小目标检测方法,其特征在于,包括以下步骤:/n步骤1:特征提取主干网络采用Resnet-101,包括Conv1、Conv2_x、Conv3_xConv4_x、Conv5_x(简记C1,C2,C3,C4,C5)五个不同尺度的采样层,将每层最后一个残差块的输出特征图利用1×1的卷积进行通道数统一,统一后的特征图分别记为M2,M3,M4,M5;/n步骤2:将M5经过3×3卷积消除融合带来的混叠效应,生成特征金字塔的最顶层特征层,记作P5,将M5经两倍上采样,与M4逐像素相加,再经过3×3卷积消除融合带来的混叠效应生成特征图,记为P4;/n步骤3 ...
【技术特征摘要】
1.一种基于改进的RetinaNet小目标检测方法,其特征在于,包括以下步骤:
步骤1:特征提取主干网络采用Resnet-101,包括Conv1、Conv2_x、Conv3_xConv4_x、Conv5_x(简记C1,C2,C3,C4,C5)五个不同尺度的采样层,将每层最后一个残差块的输出特征图利用1×1的卷积进行通道数统一,统一后的特征图分别记为M2,M3,M4,M5;
步骤2:将M5经过3×3卷积消除融合带来的混叠效应,生成特征金字塔的最顶层特征层,记作P5,将M5经两倍上采样,与M4逐像素相加,再经过3×3卷积消除融合带来的混叠效应生成特征图,记为P4;
步骤3:将C5和C4经过1×1卷积处理后的特征层分别进行两次和一次双线性插值,并与C3进行通道拼接得到全新的多层特征F3,并将通道重新排列,然后利用1×1卷积减少特征通道数,并将其与经过上采样的M4逐像...
【专利技术属性】
技术研发人员:任利,唐昊,贾宇明,贾海涛,许文波,毛晨,鲜维富,田浩琨,
申请(专利权)人:电子科技大学,
类型:发明
国别省市:四川;51
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。