双面不对称锂电池复合涂层隔膜、生产工艺及锂电池制造技术

技术编号:29334610 阅读:17 留言:0更新日期:2021-07-20 17:52
本发明专利技术提出一种双面不对称锂电池复合涂层隔膜、生产工艺及锂电池,提升陶瓷涂覆隔膜的耐高电压性能和热稳定性能,以及在高电压高能量密度的锂离子动力电池的应用性,提升锂离子动力电池的能量密度和安全性。所述一种双面不对称锂电池复合涂层隔膜,包括基体层1、上涂层2以及下涂层3;所述基体层1上具有微孔11,所述微孔11用于导通电解液中的离子;所述上涂层2包括涂覆在所述基体层1的一面的银纳米线层21和涂覆在所述银纳米线层21远离所述基体层1一面的离子导体涂层22;所述下涂层3包括涂覆在所述基体层1的另一面上的碳纳米管层31和涂覆在所述碳纳米管层31远离所述基体层1一面的陶瓷涂层32。

【技术实现步骤摘要】
双面不对称锂电池复合涂层隔膜、生产工艺及锂电池
本专利技术涉及锂离子电池生产
,尤其是锂离子电池的隔膜生产技术,具体是一种双面不对称锂电池复合涂层隔膜、生产工艺及锂电池。
技术介绍
作为推动我国锂离子电池产业技术革新的重要举措,高能量、高功率密度锂离子电池的开发已成为当今储能领域的研究热点和焦点。其中,5V高压锂离子电池相较于4V锂离子电池具有更高的工作电压和大幅提高的能量密度而受到广泛关注。隔膜作为锂离子电池的关键内层组件,其在高电压下的化学稳定性和热稳定性是决定高压锂离子电池安全性和循环寿命的关键因素之一。目前,聚烯烃基隔膜因其成本低、机械强度合适等优点,是锂离子电池中应用最广泛的隔膜。然而,这类隔膜的主要缺点是固有的疏水性和热稳定性差。疏水性和较低的表面能导致隔膜与高极性液体电解质的相互作用较弱,润湿性差,这将造成电池极化加剧,从而在制造成本和电池性能上带来严重的劣势。聚烯烃材料的熔点仅在135~165℃之间,当电池工作发热时,隔膜容易收缩或破裂,导致内部短路、热失控,甚至爆炸,严重威胁电池的安全。此外,在高压锂离子电池中,聚烯烃隔膜也面临着被氧化的风险,这将使隔膜的机械强度和电池性能恶化。因此,研发在高电压下同时具备较高化学稳定性、热稳定性和抗氧化能力的隔膜是目前高压锂离子电池发展中亟需解决的问题。
技术实现思路
为了解决
技术介绍
中提出的问题,本专利技术提出一种双面不对称锂电池复合涂层隔膜、生产工艺及锂电池,提升陶瓷涂覆隔膜的耐高电压性能和热稳定性能,以及在高电压高能量密度的锂离子动力电池的应用性,提升锂离子动力电池的能量密度和安全性。本专利技术的技术方案如下:一种双面不对称锂电池复合涂层隔膜,所述隔膜包括:基体层,所述基体层上具有微孔,所述微孔用于导通电解液中的离子;上涂层,所述上涂层包括涂覆在所述基体层的一面的银纳米线层和涂覆在所述银纳米线层远离所述基体层一面的离子导体涂层;下涂层,所述下涂层包括涂覆在所述基体层的另一面上的碳纳米管层和涂覆在所述碳纳米管层远离所述基体层一面的陶瓷涂层。进一步地,所述银纳米线层斜向交叉喷涂,所述碳纳米管层横竖交叉喷涂。进一步地,所述聚烯烃类隔膜基体层厚度d0为4-16um,所述上涂层厚度d1为1.0-15.0um,所述下涂层厚度d2为0.5-5.0um。进一步地,所述基体层孔隙率大于40%,微孔孔径为0.02-0.05um。进一步地,所述离子导体涂层具有多级孔结构。进一步地,所述基体层采用聚烯烃类隔膜基体,所述离子导体涂层采用Li-Al-Ti-PO4离子导体涂层,所述陶瓷涂层采用Al2O3陶瓷涂层。进一步地,所述Li-Al-Ti-PO4离子导体涂层颗粒和所述Al2O3陶瓷涂层颗粒粒径为0.01-2um。一种双面不对称锂电池复合涂层隔膜生产工艺,生产如上所述的双面不对称锂电池复合涂层隔膜,包括如下步骤:采用激光印刷机在所述基体层的两面上分别喷涂所述银纳米线层和所述碳纳米管层。进一步地,所述生产工艺具体包括如下步骤:步骤一、采用激光印刷机在所述基体层的两面上分别斜向交叉喷涂所述银纳米线层和横竖交叉喷涂所述碳纳米管层;步骤二、采用烧结法以及溶胶-凝胶法制备Li-Al-Ti-PO4,采用XRD、SEM、EDS、红外光谱、比表面分析技术之一种或多种分析技术对合成的Li-Al-Ti-PO4进行微观结构表征;步骤三、采用气悬浮辊涂布工艺将Li-Al-Ti-PO4涂层和Al2O3陶瓷浆料按不同厚度及比例涂于步骤一制备的基体层的两面,再采取常规热滚压后烘干办法得到所述的双面不对称锂电池复合涂层隔膜;步骤四、采用SEM、红外光谱之一的分析方法表征所述的双面不对称锂电池复合涂层隔膜在电池工作前后的结构变化;采用热分析法表征复合隔膜的热稳定性;采用液滴角度测量法表征复合隔膜的润湿能力;采用常规充放电、倍率充放电循环之一的方法评估复合隔膜在动力电池中的性能。一种具有双面不对称锂电池复合涂层隔膜的锂电池,所述锂电池包括如上所述的双面不对称锂电池复合涂层隔膜,且采用如上所述的生产工艺生产获得所述的双面不对称锂电池复合涂层隔膜。进一步地,所述锂电池为4.8-5.2V高电压高容量锂离子电池。本专利技术的有益效果包括:1)通过采用激光喷涂方法在基体层1的两面分别设置斜向交叉的银纳米线层21和横竖交叉的碳纳米管层31,所述银纳米线层21和所述碳纳米管层31均具有抑制锂突起生长和加强基体层1机械性能(包括提高延展性、拉伸强度和断裂韧性等)的作用,从而所制得的隔膜在工作过程中不容易收缩或破裂,具备较高化学稳定性、热稳定性,提高了锂电池的安全性;2)然后在两面分别涂覆不同厚度的离子导体涂层22和陶瓷涂层32,采用具有锂离子活性的陶瓷材料取代传统惰性陶瓷材料制备陶瓷涂层,在聚烯烃类隔膜两面涂覆Li-Al-Ti-PO4和Al2O3陶瓷,形成Li-Al-Ti-PO4/PE/Al2O3双面不对称结构的复合涂覆隔膜结构,制备具有本体锂离子传导能力的新型离子导体涂层隔膜,实现在有效保证隔膜热稳定性的同时,又可以提高锂离子的电导率,在锂电池中实现锂补偿,从而进一步实现基于固液双电解质的传导效应赋予锂电池更为优异的倍率性能。附图说明为了更清楚地说明本专利技术的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本专利技术的部分实施例,凡在本专利技术思想启示的范围内,做出的不需要创造性劳动的改进,均可作为本专利技术的其他实施例。图1一种双面不对称锂电池复合涂层隔膜结构示意图;图2基体层一面喷涂银纳米线层结构示意图;图3基体层另一面喷涂碳纳米管层结构示意图;图4上涂层电镜扫描图;图5下涂层电镜扫描图。附图标记说明:基体层1、微孔11、上涂层2、银纳米线层21、离子导体涂层22、下涂层3、碳纳米管层31、陶瓷涂层32。具体实施方式下面结合附图,对本专利技术作进一步的说明,以便于本领域技术人员理解本专利技术。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本专利技术的保护范围。如附图1-5所示,本专利技术首先提供一种双面不对称锂电池复合涂层隔膜,所述隔膜包括:基体层1,所述基体层1上具有微孔11,所述微孔11用于导通电解液中的离子;上涂层2,所述上涂层2包括涂覆在所述基体层1的一面的银纳米线层21和涂覆在所述银纳米线层21远离所述基体层1一面的离子导体涂层22;下涂层3,所述下涂层3包括涂覆在所述基体层1的另一面上的碳纳米管层31和涂覆在所述碳纳米管层31远离所述基体层1一面的陶瓷涂层32。如附图2和3所示,所述银纳米线层21在所述基体层1的一面斜向交叉喷涂,所述碳纳米管层31在所述基体层1的另一面横竖交叉喷涂。进一步地,所述基体层1厚度d0为4-16um,所述上涂层2厚度d1为1.0-15.0um,所述下本文档来自技高网...

【技术保护点】
1.一种双面不对称锂电池复合涂层隔膜,其特征在于,所述隔膜包括:/n基体层,所述基体层上具有微孔,所述微孔用于导通电解液中的离子;/n上涂层,所述上涂层包括涂覆在所述基体层的一面的银纳米线层和涂覆在所述银纳米线层远离所述基体层一面的离子导体涂层;/n下涂层,所述下涂层包括涂覆在所述基体层的另一面上的碳纳米管层和涂覆在所述碳纳米管层远离所述基体层一面的陶瓷涂层。/n

【技术特征摘要】
1.一种双面不对称锂电池复合涂层隔膜,其特征在于,所述隔膜包括:
基体层,所述基体层上具有微孔,所述微孔用于导通电解液中的离子;
上涂层,所述上涂层包括涂覆在所述基体层的一面的银纳米线层和涂覆在所述银纳米线层远离所述基体层一面的离子导体涂层;
下涂层,所述下涂层包括涂覆在所述基体层的另一面上的碳纳米管层和涂覆在所述碳纳米管层远离所述基体层一面的陶瓷涂层。


2.根据权利要求1所述的双面不对称锂电池复合涂层隔膜,其特征在于,所述银纳米线层斜向交叉喷涂,所述碳纳米管层横竖交叉喷涂。


3.根据权利要求1所述的双面不对称锂电池复合涂层隔膜,其特征在于,所述聚烯烃类隔膜基体层厚度d0为4-16um,所述上涂层厚度d1为1.0-15.0um,所述下涂层厚度d2为0.5-5.0um。


4.根据权利要求1-3任意一项所述的双面不对称锂电池复合涂层隔膜,其特征在于,所述基体层孔隙率大于40%,微孔孔径为0.02-0.05um。


5.根据权利要求4所述的双面不对称锂电池复合涂层隔膜,其特征在于,所述离子导体涂层具有多级孔结构。

【专利技术属性】
技术研发人员:喻鹏陈红辉吴一帆刘辉王志国张纯
申请(专利权)人:湖南农业大学
类型:发明
国别省市:湖南;43

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1