应用于触控检测的积分互容电路及其数据处理方法技术

技术编号:29300809 阅读:19 留言:0更新日期:2021-07-17 01:21
应用于触控检测的积分互容电路及其数据处理方法,电路包括依次设置的CA前置单元、CA单元、积分单元、模数转换单元。本申请的优点在于:可以在保证检测精度的前提下大幅降低模数转换器ADC的工作时间,从而降低了系统的整体功耗。此外,积分之后正负沿数据相减的数据处理方式也大幅提高了系统的抗噪声能力,提高了系统的整体性能。系统的整体性能。系统的整体性能。

Integrated mutual capacitance circuit and its data processing method for touch detection

【技术实现步骤摘要】
应用于触控检测的积分互容电路及其数据处理方法


[0001]本专利技术涉及机器人的
,尤其涉及应用于触控检测的积分互容电路及其数据处理方法。

技术介绍

[0002]随着时代的不断进步,互容式的TP触控检测技术越来越广泛地应用于各种应用领域。互容式TP触控检测是需要一组TX信号用于信号发送,另外一组RX信号则用于信号接收。由于TX与RX之间存在寄生电容CM,因此RX接收端可以根据TX端发送过来的信号量大小来判断是否有手指触摸:当没有手指触摸时,RX接收端接收到的信号量始终会保持一个相对稳定的值,而当有手指触摸时,由于会造成TX与RX之间的CM电容的容值发生变化,因此会造成RX接收端接收到的信号量也相应发生变化,而当信号的变化量超过一定的阈值之后,则判断出是有手指触摸。
[0003]然而手指触摸造成TX与RX之间的寄生电容CM的容值改变量通常较小,特别是盖板厚度较大的应用场合下,手指触摸造成的CM容值的改变量会更小,因此会造成RX接收端接收到的信号变化量也随之减少,从而会增加互容TP检测的难度与精度。
[0004]由于互容TP的检测原理是利用两组正向交叉的TX/RX实现对手指触摸的检测,当启动TP检测时,TX端会依次发送方波信号,所有RX端则实时检测该TX发送来的信号,并且根据检测到的信号量大小来判断是否有手指触摸,其互容TP检测的架构原理图如图1所示,总共有n条TX以及m条RX线,其中TX依次发送方波信号,m条RX同时进行信号采集,其中TX1与RX1之间的寄生电容命名如图所示为CM11,TX1与RX2之间的寄生电容命名如图所示为CM12,以此类推。n条TX与m条RX在触摸屏上形成n
×
m个交点,m条RX接收端同时对信号进行采集,当没有手指触摸时,m条RX接收端采集到的信号量始终保持一个相对稳定的值,也就是前后两次采集的信号量不会有太大的差异,而当有手指触摸时,比如手指触摸到TX1与RX2交叉的位置,那么CM12的电容容值就会由于手指触摸的原因而发生改变(实际会造成CM电容容值减小),这样当TX1再产生方波信号时,RX2接收端接收到的信号量就会相对没有手指触摸时接收到的信号量要小,从而产生信号量的差异。
[0005]因此从手指触摸检测的角度来看,设计上希望手指触摸导致的信号量的差异越大越好,然而手指触摸所造成的CM电容容值的改变量通常都较小,加之很多厚盖板的应用场合,会造成手指触摸所造成的CM电容容值的改变量相对来说更小,从而加大了手指检测的难度与检测精度。
[0006]传统的TP互容检测采用如图2的电路架构,CM是外部TX与RX之间的寄生电容,CMB则是内部用于补偿CM电容的BASE电容,通常情况下,CMB电容的容值可调,在实际的应用中,需要将CMB电容调整到与CM电容容值相当,传统的互容检测原理如下:
[0007]当启动互容检测时,TX端不断发送方波信号,RX端接收TX端传递来的信号,并且通过后续的电路处理产生VOUT电压,之后ADC对VOUT电压进行模数转换,产生对应的转换码值给到数字端进行后续判断与处理。
[0008]传统的互容检测通常采用双边采样的检测方式,其对应的时序控制如图3所示:当没有手指触摸时,在一个TX的扫描周期内,ADC会对VOUT电压采样两次,其中VOUT1通常被称为正沿采样电压,VOUT2通常被称为负沿采样电压,ADC的采样信号ADC_SH分别对正沿采样电压VOUT1与负沿采样电压VOUT2进行采样保持处理,之后ADC工作,将这两个模拟信号分别转换为对应的两组数字码值CODE1与CODE2,之后在数字端将这两组数字码值做差,并将差值

CODE保存。当上述信号采样重复N次之后,ADC也会相应重复N次的数据处理,这样可以得到N次的累和值N
×△
CODE。
[0009]此时,如果有手指触摸造成对应的CM电容容值发生改变,则可以得到另外一组VOUT电压,具体电压变化如图4所示:当有手指触摸时,在一个TX的扫描周期内,正沿采样电压会从VOUT1变化到VOUT1',而负沿采样电压则会从VOUT2变化到VOUT2',这样经过ADC处理之后,将这两个模拟信号分别转换为对应的两组数字码值CODE1'与CODE2',之后在数字端将这两组数字码值做差,并将差值

CODE'保存。当上述信号采样重复N次之后,ADC也会相应重复N次的数据处理,这样可以得到N次的累和值N
×△
CODE'。当N
×
(

CODE'-

CODE)大于一个设定的检测阈值时,则会判断是有手指触摸,反之则判断没有手指触摸。
[0010]从以上的分析可以看出,传统的互容检测方式需要对VOUT电压采样多次,并且每一次采样都需要ADC将正沿采样电压与负沿采样电压转成对应的数字信号,然后才能在数字端将采样得到的正沿采样数据与负沿采样数据做差值处理。而当手指触摸所造成的CM电容容值变化量较小时,对应的VOUT电压的变化量也就会相应变小,这样进行ADC处理之后单次的码值差异(

CODE'-

CODE)也会随之变小。因此为了提高检测的精度,当手指触摸所造成的CM电容容值变化量较小时,特别是在后盖板的应用条件下,传统的互容检测方式需要增加对VOUT电压的采样次数N,从而将N
×
(

CODE'-

CODE)的差异放大,以正确判断手指是否存在触摸,而这无疑会增加系统的功耗损失。

技术实现思路

[0011]为提高互容TP的检测精度,同时降低系统的整体功耗,为此,本专利技术提出了应用于触控检测的积分互容电路及其数据处理方法,具体方案如下:
[0012]应用于触控检测的积分互容电路,依次设置的CA前置单元、CA单元、模数转换单元,还包括设置在CA单元和模数转换单元之间的时序控制单元、积分单元。
[0013]应用于上述的触控检测的积分互容电路的数据处理方法,包括以下步骤:
[0014]判断是否有手指触摸,当没有手指触摸时,在正沿电压积分N次以及负沿电压积分N次之后,模数转换器ADC分别将积分之后的正沿电压与负沿电压通过模数转换转成对应的数字码值,然后在数字端进行差值处理产生对应的

CODE,若有手指触摸时,在正沿电压积分N次以及负沿电压积分N次之后,模数转换器ADC分别将积分之后的正沿电压与负沿电压通过模数转换转成对应的数字码值,然后在数字端进行差值处理产生对应的

CODE

;若

CODE



CODE的差值超过手指检测的阈值时,则判断是有手指触摸,反之,则判断是没有手指触摸;
[0015]S2、模数转换器ADC在正沿电压积分N次以及负沿电压积分N次完成之后对积分完成之后的正沿采样电压与负沿采样电压进行一次采样处理。
[0016]本发本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.应用于触控检测的积分互容电路,依次设置的CA前置单元、CA单元、模数转换单元,其特征在于,还包括设置在CA单元和模数转换单元之间的时序控制单元、积分单元。2.根据权利要求1所述的应用于触控检测的积分互容电路,其特征在于,所述时序控制单元包括开关P11、电容C1、开关P21、开关P22、开关P12,开关P11、电容C1、开关P12串联连接,所述电容C1的两端分别经过开关P21和开关P22与参考电压VREF连接。3.根据权利要求1所述的应用于触控检测的积分互容电路,其特征在于,所述积分单元包括运算放大器OP2,所述运算放大器OP2的负输入端与时序控制单元的输出端连接,并与运算放大器OP2的输出端之间并联设置有开关RST2、反馈可调电容C2,正输入端输入参考电压VREF。4.根据权利要求1所述的应用于触控检测的积分互容电路,其特征在于,所述CA前置单元包括反相器、电容CMB、电容CM,串联的反相器和电容CMB的两端并联所述电容CM,并联的输入端TX输入方波信号,输出端RX传递的信号。5.根据权利要求1所述的应用于触控检测的积分互容电路,其特征在于,所述CA单元包括运算放大器OP1,所述运算放大器OP1的负输入端与输出端RX连接,并与运算放大器OP1的输出端之间并联设置有开关RST1、反馈可调电容CF,正输入端输入参考电压VREF。6.根据权利要求1或2所述的应用于触控检测的积分互容电路,其特征在于,所述CA单元输出电压V1,所述积分单元输出电压V2,所述CA单元和积分单元中的运算放大器正输入端均输入基准电压VREF,在无手指触控的情况下,在同一个时序控制下的电压变化如下:t1时刻V1=V2=VREF,为之后的正沿采样做准备;t2时刻V1电压开始从VREF变化,产生对应的正沿电压V1P;t3时刻V2电压开始进行正沿的第一次积分变化,对正沿电压做第一次积分;t4时刻V1电压继续从VREF变化,产生对应的正沿电压V1P;t5时刻V2电压开始进行正沿的第二次积分变化,对正沿电压做第二次积分;t6时刻V2电压对正沿电压做第二次积分并趋于稳定的电压VOUT1之后,此时ADC_SH对t6时刻的V2电压进行采样并保持,之后ADC工作,将这个电压值转换为对应的数字码值CODE_P;t7时刻V1与V2被重新复位到VREF,为之后的负沿采样做准备;t8时刻V1电压开始从VREF变化,产生对应的负沿电压V1N;t9时刻V2电压开始进行负沿的第一次积分变化,对负沿电压做第一次积分;t10时刻V1电压继续从VREF变化,产生对应的负沿电压V1N;t11时刻V2电压开始进行负沿的第二次积分变化,对负沿电压做第二次积分;t12时刻V2电压对负沿电压做第二次积分并趋于稳定的电压VOUT2之后,此时ADC_SH对t12时刻的V2电压进行采样并保持,之后ADC工作,将这个电压值转换为对应的数字码值CODE_N;t13时刻回到t1时刻的状态,依次循环。7.根据权利要求1或2所述的...

【专利技术属性】
技术研发人员:黄俊钦李瑞兴
申请(专利权)人:合肥松豪电子科技有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1