一种基于内容注意力机制和掩码先验的图像补全方法技术

技术编号:28143809 阅读:34 留言:0更新日期:2021-04-21 19:24
本发明专利技术公开一种基于内容注意力机制和掩码先验的图像补全方法。包括:对图像预处理,利用算法生成二值掩码图并基于二值掩码图生成损坏图像;利用损坏图像和二值掩码图输入训练形成基于内容注意力和掩码先验的生成对抗网络模型;使用测试图像结合二值掩码图输入到训练好的模型中,进行损坏图像补全操作。本发明专利技术基于内容注意力机制和掩码先验的生成对抗网络模型,利用二值掩码图作为额外信息指导,结合输入图像训练学习,使得补全结果含有丰富的细节信息且能够保持结构上的连续性。细节信息且能够保持结构上的连续性。细节信息且能够保持结构上的连续性。

【技术实现步骤摘要】
一种基于内容注意力机制和掩码先验的图像补全方法


[0001]本专利技术涉及图像补全
,特别是涉及一种基于内容注意力机制和掩码先验的图像补全方法。

技术介绍

[0002]图像补全任务(image inpainting),是指生成给定损坏图像中缺失区域的替代内容,且使得修复的图像在视觉上逼真和在语义上合理。图像补全任务可在其他应用中使用,如图像编辑,当图像中存在分散人注意力的场景元素时,如人或者物体(通常是不可避免的),允许用户移除图像中不需要的元素,同时在空白区域填充视觉和语义上合理的内容。
[0003]生成对抗网络启发自博弈论中二人零和博弈的思想,具有生成式网络和判别式网络两个网络,利用它们间相互竞争从而不断提升网络性能,最终达到平衡。基于生成对抗网络思想,衍生出许多变种网络,并且这些网络在图像合成、图像超分、图像风格转换和图像修复等方面都取得了显著的进步。图像补全的研究,包括图像修复、图像去水印、图像去雨和图像去雾都得到了关注。
[0004]人类的内容注意力机制和掩码先验(Attention Mechanism)是从直觉本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.基于内容注意力机制和掩码先验的图像补全方法,其特征在于,包括:S1.对图像预处理,生成二值掩码图M,利用二值掩码图M合成损坏图像x;S2.通过训练得到进行图像补全的内容注意力机制和掩码先验的生成对抗网络模型,包括利用所述损坏图像x和对应的二值掩码图M作为网络输入,未损坏图像作为目标真实图像y,通过训练学习损坏图像到目标真实图像之间的复杂非线性变换映射,训练生成对抗网络的生成器和判别器;通过生成器中的编码器对输入的损坏图像以及二值掩码图M通过局部卷积层进行编码、由解码器根据内容注意力机制选取所获得的隐码解码到损坏图像x中,得到补全图像与目标真实图像在判别器中进行对抗损失的计算;迭代多次达到稳定后完成模型的训练;S3.使用训练好的生成对抗网络模型,对测试数据进行补全处理。2.根据权利要求1所述的基于内容注意力机制和掩码先验的图像补全方法,其特征在于,步骤S2包括:S21:初始化图像补全任务中的网络权重参数,其中,生成器的损失函数是L
total
,判别器的损失函数是L
D
;S22:结合损坏图像和二值掩码图输入到生成器网络G中进行图像补全任务,生成的补全图像和目标真实图像一起输入到判别器网络D中,依次迭代训练使得生成器的损失函数L
total
和判别器的损失函数L
D
均降低至趋于稳定;S23:同时训练表情生成和去除任务,直至所有损失函数不再降低,从而得到最终的生成对抗网络模型。3.根据权利要求2所述的基于内容注意力机制和掩码先验的图像补全方法,其特征在于,所述局部卷积层的输出值取决于未损坏的区域,数学描述如下:其中,

表示像素级乘法,1表示所有元素均为1且形状和二值掩码图M相同的矩阵,W表示卷积层的参数,F表示前层卷积层的输出特征图,b表示卷积层的偏差,M表示对应的二值掩码图,是缩放因子,调整已知区域的权重;执行局部卷积之后更新二值掩码图M,数学描述如下:即若局部卷积层能够根据有效输入得到输出结果,那么将二值掩码图M中的对应处位置标记为1。4.根据权利要求3所述的基于内容注意力机制和掩码先验的图像补全方法,其特征在于,所述内容注意力机制通过以下步骤输出形成缺失区域:首先计算缺失部分和已知部分的特征相似度:提取已知区域的块,并重新调整大小后作为卷积核的参数;已知区域块{f
x,y
}和未知区域块{b
x

,y

}之间的余弦相似度通过如下式子计算:
在x

y

维度上用缩放的softmax对相似度权衡,得到每个像素点的注意力值:其中,λ是一个常数;最后把选取出来的未知区域块{b
x

,y

}作为反卷积的卷积核参数重建出缺失区域;为了获得注意力机制的一致...

【专利技术属性】
技术研发人员:马鑫侯峦轩赫然孙哲南
申请(专利权)人:天津中科智能识别产业技术研究院有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1