一种弯剪金属构件混合强化恢复力模型与参数确定方法技术

技术编号:28054012 阅读:19 留言:0更新日期:2021-04-14 13:20
本发明专利技术提出一种构件恢复力模型以及参数确定方法。此恢复力模型是基于材料的混合强化本构模型(物理方程),并利用构件的几何方程、平衡方程、边界条件推导得到构件恢复力模型。采用合强化模型对材料的等向强化与随动强化予以描述。在腹板屈服前采用整体计算模型;在腹板屈服后,认为腹板受纯剪切,而两翼缘单独受弯;腹板与翼缘的相互作用通过屈服后刚度修正系数予以修正.采用正交试验等参数方法拟合得确定其屈服后刚度修正系数。屈服后刚度修正系数地公式,用构件长度比表示。用构件长度比表示。用构件长度比表示。

【技术实现步骤摘要】
一种弯剪金属构件混合强化恢复力模型与参数确定方法


[0001]本专利技术涉及一种弯剪金属构件混合强化恢复力模型与参数确定方法,属于结构工程与计算机辅助设计领域。

技术介绍

[0002]材料层面的应力应变关系的数学模型也称作本构模型;构件层面的力

位移关系也称作恢复力模型。本构模型与恢复力模型是结构工程中的重要概念,基于材料或者构件层面力学行为的数学模型,才能进一步地描述对于构件在结构系统中相应工况下的受力行为,从而进一步的分析计算优化结构设计。在结构工程中最常用的金属构件,一般从以下三个方面来建立数学模型对其力学模型进行描述:(1)材料本身的力学行为与数学描述;(2)构件层面宏观力学现象与数学描述(恢复力模型),而这其中的参数通过简化公式推算、试验、参数分析拟合等方式确定;(3)材料的本构模型(物理方程)+几何方程+平衡方程+边界条件推导得到构件恢复力模型。当计算资源无限、建模时间容许(计费)的情况下,工程师与研究人员可以基于材料本构模型建立详细的模型去做分析,得到尽可能准确的分析结果。但更多的情况是计算资源有限,所以许多时候还是要用基于宏观力学现象的恢复力模型与简化分析。

技术实现思路

[0003]目前结构工程中描述金属构件恢复力模型的方法主要存在以下失真问题:
[0004](1)强化描述不准确。这里的“强化”是指构件屈服后,力随加载量而增加的现象,还可以区分为单调加载与循环加载情况下的差异。强化的来源有多种。一方面,是材料本身的特点带来的,例如强度相对较高的钢材例如Q235、Q345甚至以上等钢材表现出来的是随动强化的特点;而低屈服点钢材例如LY100表现出明显的混合强化现象,并且等向强化部分特点突出。另一方面,是构件的构造形式带来,例如一根耗能梁或者剪切阻尼器或者钢板墙,由于其弯剪受力的特征,其翼缘或者边缘构件将对构件的屈服后刚度有较大贡献。宏观上就表现为“强化"。此外,还与加载历史相关。在加载过程中先加大位移还是先加小位移,也会表现出不一样的强化特性,这个“与加载历史相关”的特点是由于很多材料本身的硬化存在所谓的"最大历史应变记忆"效应,而构件的弯剪受力特征也使得构件的最大出力与最大加载位移相关,所以是一个材料与构件的综合影响。
[0005](2)屈服描述不准确。在实际许多的恢复模型也都有一个“屈服点”的概念。但是,由于材料本身的随动强化特点以及许多构件进入屈服是“逐渐地”,表现滞回曲线上是一个弧形的“屈服段”,而不是屈服点。目前工程领域往往不得已采用较为粗糙的力学模型,这以金属减震设计为代表的结构设计、产品设计、试验验收标准制定与执行带来了较大的困难。例如在设计阶段不得已采用不能准确描述强化与屈服的简化模型,进而无法准确的计算耗能与阻尼,也无法较为准确的估计极限承载力导致“强节点弱构件”设计遇到操作层面的困难;也导致规范制定时无法形成较为准确又可操作的定量验收标准。
[0006]为解决上述技术问题本专利技术的构思是构建一种基于材料层面本构参数的构件恢复力模型以及参数确定方法。其特征在于,将弯剪金属构件的剪力分解为腹板与翼板的贡献叠加,基于材料层面的本构参数推导得到构件层面的恢复力模型,基于正交数值模拟方法标定恢复力模型的参数指标。
[0007]特别地,采用chaboche混合强化模型对材料的等向强化与随动强化予以描述。
[0008]特别的,对于工字形截面在不同的状态下采用如下简化计算模型:在腹板屈服前采用整体计算模型;在腹板屈服后,认为腹板受纯剪切,而两翼缘单独受弯;腹板与翼缘的相互作用通过屈服后刚度修正系数予以修正;
[0009]进一步地,采用正交试验等参数方法拟合得确定其屈服后刚度修正系数。
[0010]进一步地,屈服后刚度修正系数地确定方法为:首先,用未修正的公式计算得到屈服后刚度;而后,利用基于材料混合强化模型的参数进行正交数值模拟分析,得到构件屈服后刚度(数值模拟法);取数值模拟得到的屈服后刚度与未修正公式得到屈服后刚度的比值为屈服后刚度比修正系数;最后,拟合得到屈服后刚度修正系数的公式;
[0011]进一步地,屈服后刚度修正系数的公式,用构件长度比表示,即拟合构件长度比与屈服后刚度系数地关系
[0012]本专利技术的与现有技术相比较,具有如下显而易见的实质性特点和优点:
[0013](1)以往常用的构件模型只能基于大量的构件试验标定恢复力模型参数,并不能用于预测不同材料与不同几何尺寸构件的力学行为,因而并不能指导设计。本专利技术提出的方法基于材料的混合强化模型与力学推导得到构件的恢复力模型,可直接通过材料的混合强化模型(例如chaboche模型)与构件的几何尺寸直接推导得到构件的力位移关系。这意味着对于任意的材料与几何尺寸,通过本方法都可以建立起相应的构件层面混合强化模型。并基于此模型直接指导结构设计与构件设计。
[0014](2)由于本专利技术提出的构件恢复力模型中包含有材料恢复力模型参数,因此可以考虑材料混合强化、弯曲剪切成分导致的渐近屈服过程,也可以考虑材料硬化受加载历史的影响。
[0015](3)过去需要利用考虑材料混合强化的实体单元与壳单元才能描述的构件力学行为,通过本文提出的模型用一个连接单元就可以予以准确描述。避免了壳单元与实体单元需要划分众多单元导致的巨大计算量。
[0016](4)本专利技术提出的方法通过一个连接单元就可以考虑翼缘与腹板采用不同材料时的力学行为计算,解决了一般的梁单元不能考虑例腹板与翼源采用不同材料制作的金属构件(例如剪切型阻尼器,金属耗能连梁等)的计算分析。
附图说明
[0017]图1为工字形截面的弯曲剪切构件
[0018]图2为工字形截面的弯曲剪切构件的分解
[0019]图3为实施例1根据正交数值模拟得到力

位移关系
[0020]图4为根据此力位移关系拟合得到屈服后刚度修正系数与长度比的关系
[0021]图5为根据本专利技术增量形式的恢复力模型实现流程
具体实施方式
[0022]以下结合附图和具体实施例对本专利技术进行详细描述,但不作为对本专利技术的限定。
[0023]实施方式1:对于工字形截面如图1所示,采用如图2所示的简化计算模型。可推导得 到全量形式的剪力位移关系如下式所示
[0024][0025]为弹性状态的刚度,其中剪切刚度弯曲刚度为屈服后刚度为对于的shear links,F
y
=V
p
其中V
p
=0.58
×
R
yw
×
f
yw
×
t
w
×
h
w

[0026]α(ε
p1
)是混合强化模型的背应力函数,代表了混合强化模型的随动强化部分。本文根据参考文献将背应力取值为四个。
[0027][0028]因此,
[0029]C
k
与γ
k
是本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种弯剪金属构件混合强化恢复力模型与参数确定方法,其特征在于,将弯剪金属构件的剪力分解为腹板与翼板的贡献叠加,基于材料层面的本构参数推导得到构件层面的恢复力模型,基于正交数值模拟方法标定恢复力模型的参数指标。2.基于权利要求1,采用chaboche混合强化模型对材料的等向强化与随动强化予以描述。3.基于权利要求1与权利要求2,对于工字形截面在不同的状态下采用如下简化计算模型:在腹板屈服前采用整体计算模型;在腹板屈服后,认为腹板受纯剪切,而两翼缘单独受弯;腹板与...

【专利技术属性】
技术研发人员:尹文汉孙飞飞金华建
申请(专利权)人:同悟上海建筑科技有限公司
类型:发明
国别省市:

相关技术
    暂无相关专利
网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1