一种基于深度学习的细胞微核识别、定位和计数方法技术

技术编号:27977200 阅读:32 留言:0更新日期:2021-04-06 14:11
本发明专利技术公开了一种基于深度学习的细胞微核识别、定位和计数方法,涉及细胞微核检测技术领域。本发明专利技术包括构建深度学习特征提取网络模型C、构建细胞微核识别定位网络模型D、将C和D串联记为深度学习细胞微核识别定位网络模型E。本发明专利技术通过构建深度学习细胞微核识别定位网络模型E,运用了卷积操作、特征图的批归一化操作、非线性映射操作、池化操作以及非极大值抑制算法,省去了人工阅片的繁琐过程,提高了微核检测的效率;提高了微核计数准确率,能更加准确的反应细胞的变异情况。

【技术实现步骤摘要】
一种基于深度学习的细胞微核识别、定位和计数方法
本专利技术属于细胞微核检测
,特别是涉及一种基于深度学习的细胞微核识别、定位和计数方法。
技术介绍
科技活动带来的有害物理、化学和生物因子会对人的遗传物质造成损害,导致癌症病发率增高,体外微核检测是遗传毒理重要的评价方法之一,广泛用于放射性接触人员辐射效应的健康监护、人群遗传稳定性的健康筛查、药物的临床遗传毒理评价等,具有极高的临床应用价值。传统的微核检测采用人工显微镜阅片,耗时费力,效率低下,准确性也难也保证。微核的自动化检测技术是目前重要的发展方向,智能化的图像分析和结果判断能大大加快检测通量和结果的标准化。目前国内关于智能化图像处理的体外微核检测方法尚属空白。现有的微核检测方法主要分为三种:(一)人工显微镜阅片;(二)流式细胞仪检测;(三)激光扫描仪检测。人工显微镜阅片是指采用细胞质阻断方法制备微核检测图片,在显微镜下根据双核、微核、核质桥和树突特征及人工识别标准由工作人员主观判断细胞微核类别。人工显微镜阅片方法虽然程序简单,但存在一些明显的缺陷:<br>1、人工阅片时本文档来自技高网...

【技术保护点】
1.一种基于深度学习的细胞微核识别、定位和计数方法,其特征在于:包括以下步骤:/nStep1:输入原始细胞光学显微镜图像A;/nStep2:对原始细胞光学显微镜图像A进行预处理,具体为:将原始细胞光学显微镜图像A转化成灰度图像或RGB图像;进行图像增强处理,强调突出细胞核部分信息,削弱细胞质部分信息;并分割为若干等分辨率的图像B;/nStep3:构建深度学习特征提取网络模型C,具体为:首先输入图像B;再依次执行卷积操作、特征图的批归一化操作和非线性映射操作;最后进行池化操作;/nStep4:构建细胞微核识别定位网络模型D,具体为:首先输入从深度学习特征提取网络模型C中提取的特征;再根据特征捕捉...

【技术特征摘要】
1.一种基于深度学习的细胞微核识别、定位和计数方法,其特征在于:包括以下步骤:
Step1:输入原始细胞光学显微镜图像A;
Step2:对原始细胞光学显微镜图像A进行预处理,具体为:将原始细胞光学显微镜图像A转化成灰度图像或RGB图像;进行图像增强处理,强调突出细胞核部分信息,削弱细胞质部分信息;并分割为若干等分辨率的图像B;
Step3:构建深度学习特征提取网络模型C,具体为:首先输入图像B;再依次执行卷积操作、特征图的批归一化操作和非线性映射操作;最后进行池化操作;
Step4:构建细胞微核识别定位网络模型D,具体为:首先输入从深度学习特征提取网络模型C中提取的特征;再根据特征捕捉原始细胞中的微核,得到微核定位坐标框;最后通过非极大值抑制算法过滤掉无效的或冗余的微核定位坐标框;
Step5:将深度学习特征提取网络模型C和细胞微核识别定位网络模型D串联,记为深度学习细胞微核识别定位网络模型E,进行网络训练,计算损失,通过随机梯度下降法修改网络权重,最后保存训练好的深度学习细胞微核识别定位网络模型E的权值;
Step6:将待检测细胞光学显微镜图像F输入...

【专利技术属性】
技术研发人员:郑晓亮王飞周昕王日晟姚剑波
申请(专利权)人:安徽丹姆斯生物科技有限公司
类型:发明
国别省市:安徽;34

相关技术
    暂无相关专利
网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1