一种基于视觉图像对人体运动动作自动进行伤病风险评估及动作矫正的方法、装置及设备制造方法及图纸

技术编号:27854865 阅读:36 留言:0更新日期:2021-03-30 22:50
本申请公开了一种基于视觉图像对人体运动动作自动进行伤病风险评估及动作矫正的方法、装置及设备,根据摄像头采集的人体跳跃及落地的视频,利用深度学习及滤波算法,自动得到重要关节节点的三维坐标的轨迹,根据坐标轨迹计算相关风险因素变量,根据计算结果对运动风险进行评估,以及给出矫正方法。该方法所计算的相关风险因素均为经过大量运动伤病研究总结出的结果。该评估方法完全不需要人为干预,可以准确的计算出关节节点的坐标以及相关的风险因素,并根据每个人不同的风险给出针对性的矫正,因而在减少运动伤病方面有重要的意义。

【技术实现步骤摘要】
一种基于视觉图像对人体运动动作自动进行伤病风险评估及动作矫正的方法、装置及设备
本申请涉及计算机图像处理领域,尤其涉及一种基于视觉图像对人体运动动作进行伤病风险评估及动作矫正的方法、装置及设备。
技术介绍
随着人群对运动的广泛认识,各项运动的参与率越来越高,然而,运动伤病,尤其对青少年来说,不仅对个人的健康产生负面的影响,对社会也带来了巨大的负担。多项研究表明,运动过程中的姿势对于运动伤病的发生有很大的相关性,比如跳跃时的很多伤病来源于落地姿势不正确。传统意义上姿势的矫正需要专业的教练进行指导,但受限于专业教练数量稀少、指导成本高,而且无法以客观的方式对姿势进行评价,在运动姿势的评估上很难达到很好的效果。近年来人工智能在计算机视觉的迅速发展使得基于视觉图像的自动评估成为了可能。本专利技术利用视觉图像,通过对关节点的检测和风险因素的计算,可以提供自动运动伤病风险评估及矫正,有助于减少运动伤病。
技术实现思路
本说明书实施例提供一种基于视觉图像对人体运动动作进行伤病风险评估及动作矫正的方法、装置及设备,用以解决现本文档来自技高网...

【技术保护点】
1.一种根据视觉图像对人体运动进行风险评估及矫正的方法,其特征在于,包括:/n根据人体进行特定动作(如跳跃及落地)的视觉图像自动得到重要关节点的三维空间坐标轨迹;/n根据关节点的三维轨迹计算相关风险因素变量;/n根据风险因素对动作进行风险评估及矫正。/n

【技术特征摘要】
1.一种根据视觉图像对人体运动进行风险评估及矫正的方法,其特征在于,包括:
根据人体进行特定动作(如跳跃及落地)的视觉图像自动得到重要关节点的三维空间坐标轨迹;
根据关节点的三维轨迹计算相关风险因素变量;
根据风险因素对动作进行风险评估及矫正。


2.如权利要求1所述的方法,其特征在于,根据人体进行特定动作(如跳跃及落地)的视觉图像自动得到重要关节点的三维空间坐标轨迹,包括:
利用深度学习在视觉图像中识别出重要关节点所对应的像素,得到每一帧上关节点的二维坐标;
通过每一帧的关节点二维坐标,利用神经网络和滤波方法得到关节点的三维坐标,并进行平滑,得到更准确的三维轨迹。


3.如权利要求1所述的方法,其特征在于,根据关节点的三维空间坐标轨迹,计算相关风险因素变量,包括:
根据髋关节、膝关节、踝关节等关节的三维运动轨迹,计算落地过程中小腿与地面的夹角、大腿与小腿的最大夹角等变量;
对角度值进行滤波,提升信噪比和测量精度。


4.如权利要求1所述的方法,其特征在于,对相关风险因素变量进行分析,得到运动风险评估,并根据评估结果给出矫正方法。


5.如权利要求4所述的方法,其特征在于,对小腿与地面在平行于人体冠状面的夹角进行计算,以90度为中心,得到夹角的最大偏离值,对偏离值进行分析,包括:
偏离值超过10度时,给出风险提示;
给出正确的角度值。


6.如权利要求4所述的方法,其特征在于,对大腿与小腿在平行于人体冠状面的夹角进行计算,以0度为中心,得到夹角的最大偏离值,对偏离值进行分析,包括:
偏离值超过10度时,给出风险提示;
给出正确的角度值。


7.一种根据视觉图像对人体运动进行风险评估与矫正的装置,其特征在于,包括:
成像及关节点检测模块,根据视觉摄像头对人体运动过程进行成像,并根据视觉图像利用深度学习方法得到三维关节点的坐标;
风险因素计算模块,根据三维关节点的坐标计算...

【专利技术属性】
技术研发人员:冯雪李吉光徐一舟
申请(专利权)人:杭州福照光电有限公司
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1